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ACTION FUNCTIONALS FOR STOCHASTIC DIFFERENTIAL

EQUATIONS WITH LÉVY NOISE

SHENGLAN YUAN AND JINQIAO DUAN*

Abstract. This article is about stochastic dynamical systems with small
non-Gaussian Lévy noise. We review the recent works on the large deviation
techniques that deal with the decay of probabilities of rare events on an
exponential scale. We focus on deriving the action functionals for dynamical
systems with Lévy processes of finite exponential moments. This is achieved
with help of the extended contraction principle, Legendre transform and Lévy
symbols. We also illustrate the results with an example.

1. Introduction

Stochastic effects are ubiquitous in complex systems from science and engineer-
ing [1]. Although random mechanisms may appear to be very small or very fast,
their long time impacts on the system evolution may be delicate or even profound
[13]. Mathematical modeling of complex systems under uncertainty often leads to
stochastic differential equations (SDEs), as seen in, for example, [2, 14, 18, 19].
Fluctuations appeared in these SDEs are often non-Gaussian rather than Gauss-
ian.

The long time large deviation behaviors of slow-fast systems have attracted a lot
of attention because of the various applications in statistical physics, biophysics,
geophysics, climate dynamics engineering, chemistry and financial mathematics
[3, 8, 11]. Large deviations for SDEs driven by Brownian motion are now well-
known [5, 10, 17], while certain large deviation results for SDEs with Lévy noise
are available more recently [4, 12].

Action functionals play an important role in understanding transitions in the
context of large deviations [9, 15, 16]. The main goal of this review article is to
derive the action functionals for the following SDE with a Lévy process

dXε
t = b(Xε

t−)dt+
√
εσ(Xε

t−)dBt + η(Xε
t−)dL

ε
t ,

where Lε
t := εL t

ε
is a scaled Lévy process with finite exponential moments.

We first show that the scaled Lévy process satisfies a large deviation principle,
and obtain its action functional. Then we construct continuous mappings to get an
exponentially good approximations. Finally, we derive the action functionals for
SDEs with Lévy noise by using extended contraction principle, Legendre transform
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COST BENEFIT ANALYSIS OF STOCHASTIC MODEL OF A 

SYSTEM WITH PROVISO OF SWITCH RECTIFICATION 

AND OPERATING UNIT TIME THRESHOLD 

R. K. BHARDWAJ,  MANDEEP KAUR* 

Abstract. A probabilistic model of a cold-standby system is 
developed in the current research paper. The system model takes 
into account switch rectification as well as the operating unit's 
maximum operation time limit. The model is built on the theory of 
semi-Markov processes. Using the regenerative point technique, 
some performance measures are derived. For numerical 
representations of the results, a data set is considered. 

1. Introduction  

The long sustaining of a working system demands for the cost-benefit analysis. 

The availability of the system and hence the profit depends upon various 

remedial strategies adopted. The frequency of remedial actions as well as the 

amount of time spent by the server are key components contributing to system 

running cost. So there are some of the factors that affect the running cost of 

the system. One way of improving the system performance is to use standby 
unit. In the literature researchers have tried to develop probabilistic system 

models to reveal the scope of improvement. Some studies such as (Singh & 

Bhardwaj, 2017), (Yongjin et al., 2018) etc., emphasizes the cold standby 

systems. The provision of preventive maintenance is studied by (Garg & 

Kadyan, 2016), (Yang et al., 2018). In the present research paper we evaluated 

the cost-benefit of a two identical unit cold-standby system. The operating 

unit gets preventive maintenance after surpassing a threshold limit, called 

maximum operation time.  Upon failure the operating unit needs replacement 

by the standby unit that may or may not found operable. Similarly, for doing 

replacement task the switch also may or may not found operable. A service 

facility, called server, is responsible to remedial or rectification activities in the 

system.  The semi-Markov processes (Limnios, 2012) and regenerative point 

technique (Smith, 1955) are used to develop the system model. The system 

performance measures such as availability, busy period, frequency of remedial 

tasks etc. are evaluated to study the system profit.  

2.  Acronyms 

The notations and acronyms in this paper are used that of (Bhardwaj & Singh, 

2017). Some additional notations as given below. 
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ba /               
Probability that repair/ replacement is feasible after 

inspection 

PMTpmt Uu /  
Unit under Preventive Maintenance (PM)/ under PM 

continuously from previous state 

PMTpmt Ww /  
Unit waiting for PM/ waiting for PM continuously from 

previous state 

)(/)( tPtp mm  
 pdf/ cdf of preventive maintenance (PM) time 

3.  System State Transition Diagram 

 
Figure: State transition diagram  

4.  Transition Probabilities  

Simple probabilistic considerations yield the following expressions for the non-

zero elements 
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5.  Mean Sojourn Times 

The mean sojourn time in the state iS  is given by- 
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6.  Cost-Benefit Analysis  

Steady State Availability 

Let )(tAi  be the probability that the system is in up-state at instant ‘t’ given 

that the system entered regenerative state  iS  at t=0. The steady state 

availability is given below. 
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Busy Period of Server due to inspection 

Let )(tB I
i  be the probability that the server is busy in inspection of the unit 

due to cold-standby failure at an instant ‘t’ given that the system entered the 

state iS  at time t=0. The steady state busy due to inspection given below. 
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Busy Period of Server due to Repair of Unit    

Let )(tB R
i be the probability that the server is busy in repairing the unit due 

to failure at an instant ‘t’ given that the system entered the regenerative state 

iS  at time t=0. We get the time for which server is busy due to repair in 

steady state. 
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Busy Period of Server due to Repair of Switch    

Let )(tBRS
i be the probability that the server is busy in repairing the switch 

due to failure at an instant ‘t’ given that the system entered the regenerative 

state iS  at time t=0. 
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Busy Period of Server due to Preventive Maintenance   

Let )(tBPM
i be the probability that the server is busy in preventive 

maintenance at an instant ‘t’ given that the system entered the regenerative 

state iS  at time t=0.  
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Expected Number of Replacements         
 

Let )(tRP
i  be the expected number of replacements of the unit by the server 

in (0, t] given that the system entered the regenerative state iS  at time t=0.  
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Expected Number of Repairs (Unit)         

Let )(tRU
i  be the expected number of repairs of the failed unit by the server 

in (0, t] given that the system entered the regenerative state iS  at t=0.  
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Expected Number of Repairs (Switch)         

Let )(tRS
i  be the expected number of repairs of the failed switch by the server 

in (0, t] given that the system entered the regenerative state iS  at t=0.  
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Expected Number of Inspections   

Let )(tI I
i  be the expected number of inspections of the failed unit in (0, t] 

given that the system entered the regenerative state iS  at t=0.  
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Expected Number of preventive Maintenances (PM)  

Let )(tPM
i  be the expected number of PM of the failed unit in (0, t] given 

that the system entered the regenerative state iS  at t=0.  
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7.  Profit  

The Profit incurred to the system model in (0,t] is given as 

MPCIICSRCURCPRCPMBCRSBCRBCIBCAKP 09080706 0504030201(000                                                                                 



451COST BENEFIT ANALYSIS OF STOCHASTIC MODEL... 

0K = Revenue per unit up-time of the system 

1C   =Cost per unit time for which server is busy in the inspection  

2C   = Cost per unit time for which server is busy in the repair of failed unit 

3C   = Cost per unit time for which server is busy in the repair of switch 

4C   = Cost per unit time for which server is busy in the PM 

5C
  
= Cost per unit replacement of the unit,  

6C
 
= Cost per unit repair of the unit 

7C
 
= Cost per unit repair of the switch, 

8C
 
= Cost per unit inspection of the standby unit, 9C   = Cost per unit PM 

of unit 

8.  Illustration using Weibull Distribution 

As a special case Weibull density function with common shape parameter and 

different scale parameters is used as follows:  

)exp()( 1   tttz  
, )exp()( 1   tttg  

,  
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, )exp()( 1   ttth  

,                     

)exp()( 1   ttts  
, ),exp()( 1   ttto  

 

),exp()( 1   tttpm    Where 0t  and 0,,,,,,,  .  

The following numerical results are obtained

 Table: Effect of various parameters on the Profit 

Failur
e rate 
(α) 

Profit (η=0.5) 
p=0.4,q=0.6,a=0.3
,b=0.7,β=0.6, 
γ=0.7,λ=0.3,μ=0.1
,ν=0.02,ω=0.8 

p=0.6, 
q=0.4 

β=0.7 λ=0.5 ν=0.03 ω=1.0 

0.01 
0.02 
0.03 
0.04 
0.05 

29064.65 
28841.39 
28601.98 
28347.44 
28078.80 

29107.90 
28903.75 
28685.25 
28453.26 
28208.60 

29128.30 
28914.16 
28685.23 
28442.55 
28187.13 

29460.93 
29331.65 
29188.53 
29031.64 
28861.09 

28850.96 
28612.75 
28359.43 
28092.00 
27811.47 

29194.70 
28971.88 
28732.37 
28477.27 
28207.65 

Failur
e rate 
(α) 

η=1.0 
p=0.4,q=0.6,a=0.3
,b=0.7,β=0.6, 
γ=0.7,λ=0.3,μ=0.1
,ν=0.02,ω=0.8 

p=0.6, 
q=0.4 

β=0.7 λ=0.5 ν=0.03 ω=1.0 
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0.01 
0.02 
0.03 
0.04 
0.05 

26526.04 
26192.33 
25867.03 
25549.63 
25239.67 

26706.36 
26427.20 
26153.22 
25884.07 
25619.41 

26788.99 
26449.34 
26120.18 
25800.77 
25490.46 

27415.98 
27116.39 
26819.43 
26525.28 
26234.08 

26211.96 
25887.26 
25570.41 
25260.96 
24958.50 

26881.77 
26523.32 
26175.51 
25837.59 
25508.88 

Failur
e rate 
(α) 

η=2.0 
p=0.4,q=0.6,a=0.3
,b=0.7,β=0.6, 
γ=0.7,λ=0.3,μ=0.1
,ν=0.02,ω=0.8 

p=0.6, 
q=0.4 

β=0.7 λ=0.5 ν=0.03 ω=1.0 

0.01 
0.02 
0.03 
0.04 
0.05 

23631.81 
23393.29 
23166.47 
22949.76 
22741.91 

23945.07 
23784.49 
23625.76 
23468.86 
23313.81 

24130.91 
23850.92 
23590.24 
23345.82 
23115.32 

25102.58 
24790.42 
24497.05 
24219.79 
23956.53 

23419.33 
23192.36 
22975.50 
22767.51 
22567.38 

24004.44 
23728.05 
23468.86 
23224.27 
22992.20 

 9. Discussion on Results 

The above table depicts the behavior of profit in relation to the failure rate and 

various values of the shape parameter. The table shows a decreasing trend in 
system profit as the unit failure rate increases. We can also see that the index 

begins to rise as the repair rate rises from 0.6 to 0.7, the inspection rate rises from 

0.3 to 0.5, and the PM rate rises from 0.8 to 1.0, while a downward trend can be 

seen. The numerical results show that system performance is highly dependent on 
standby and switch failures. As a result, adequate design and corrective strategies 

are required to make such systems more reliable and profitable. 
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