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Abstract : We consider the problem of ensuring the reliability of the procedure of remote modification of
intelligence of mobile robots for space application, implemented on the basis of FPGA. We propose a functional
structure of the reconfiguration controller, which performs the neural network-based classification of faults
occurring during remote modification of intelligence of mobile robots for space application. We consider the
software and algorithmic support of the reconfiguration controller, which provides detection of certain kinds of
occurring faults, the place where they occur and the fact of occurrence of several faults, as well as the
implementation of periodic diagnostics in the process of operation of mobile robots for space application. We
investigate the likelihood of type I and type II errors in the course of automatic fault detection.
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1. INTRODUCTION
Large duration of the deep space exploration missions, which is measured in months and years, results in a

number of specific requirements to the design of mobile robots for space application [1-2]. For example, mobile
robots for space application require a high level of survivability (degradation), the ability to perform tasks in the
conditions of failure of some mechanical components, a part of hardware or software, as well as in the conditions
of previously unforeseen changes in the environment parameters. It is also required to ensure a high level of
versatility (reserve), the ability of mobile robots for space application to continue successful functioning under
changing task objectives (mission change) or under changing ways of achieving them.

It is possible to satisfy these requirements, provided the artificial intelligence of mobile robots for space
application will be able to be changed (modified) when new tasks are posed before them or the conditions for
their implementation worsen. Of particular relevance in this context is the use of hardware and software with
reconfigurable structure implemented on the basis of field programmable gate array (FPGA). The use of these
technologies allows remotely transmitting (from a planet-based complex or from the Earth) new or modified
software modules into the control device of mobile robots for space application with automatic firmware renewal
of the mobile robot’s FPGA.

Much attention in this case should be paid to ensuring the reliability of the reconfiguration procedure. A topical
direction in this area is the introduction of automated or automatic means of search and localization of faults [3-4].
To solve this problem, specialized software and algorithmic support has been developed for the reconfiguration
controller, which performs the neural network-based classification of faults occurring during remote modification of
intelligence of mobile robots for space application.
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The article discusses the problem of application of the neural network-based classification technologies to
provide reliable detection of the type of occurring malfunctions, their place and the fact of occurrence of several
faults, as well as to implement periodic diagnostics in the process of operation of mobile robots for space application.

In this connection, an important task is to study the probability of type I and type II errors during neural
network-based classification of faults [5-7].  A type I error, also known as a false alarm, false response or false
positive actuation, is a situation when the neural network classifies the state of the circuit as belonging to one of the
types of faults, while the input vector of the neural network corresponds to the circuit state in the absence of faults.
A type II error, which is also called the omission of event or false negative actuation, is a situation when the neural
network classifies the state of the circuit as operable, while the input vector of the neural network corresponds to
a circuit state in the presence of a particular type of fault.

In the diagnostics of the presence of faults in the circuit implementing the intelligence of mobile robots for
space application, the most important task is to minimize the number of missed faults (type II errors), because in
this case the continued operation of the robot as a whole is threatened. However, in the condition of realization of
deep space exploration missions, it is also important to prevent a significant increase in the risk of type I errors,
because the implementation of the reconfiguration procedure to remove a falsely detected error is connected with
additional time and energy costs.

2. METHOD

2.1. The functional structure of the hardware-reconfigurable digital module of intelligent control of mobile
robots for space application

Reconfiguration of FPGA is carried out on the initiative of the remote support center on the Earth under
changing the mission objectives of mobile robots for space application or changing the ways of achieving them
[8-9]. Reconfiguration can also be initiated by the mobile robot itself to repair the faults discovered by it in the
course of self-diagnostics [10-11].

A system of intelligent control of mobile robots for space application is proposed on the basis of hardware-
reconfigurable digital platform (FPGA), which includes the following equipment [12]:

1. Reconfiguration controller performing neural network-based classification of faults occurring during
remote modification of intelligence of mobile robots for space application;

2. Programmable hardware on the basis of FPGA for the strategic, tactical and drive levels of the mobile
robot control;

3. Reconfiguration server which is a part of a remote support center connected with the mobile robot by a
network infrastructure and which is designed for remote control of a group of mobile robots for space
application, including for implementing connected reconfiguration of their software and hardware.

In accordance with the presented hardware composition, we propose a functional structure of hardware-
reconfigurable digital module of intelligent control of mobile robots for space application (Figure 1).

The self-test tools perform the following functions:
1. Providing diagnostics of the functional state of the mobile robot intelligence after modifications in automatic

mode;
2. Testing the operability of the reconfigurable module;
3. Determination of the type of fault;
4. Localization of the fault and the formation of quarantine around the faulty circuit elements;
5. Determination of the type of fault under the possible occurrence of more than one fault;
6. Notification of the remote support center concerning the results of diagnostics;
7. Repeated reconfiguration to repair the fault;
8. Ensuring the monitoring of the functional state of circuits that implement mobile robot intelligence in real

time.
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Fig. 1. Functional structure of hardware-reconfigurable digital module of intelligent control
of mobile robots for space application.

2.2. Structure of the neural network-based fault classifier

The described self-test tasks can be performed by both a neural network-based classifier consisting of a
single neural network and a neural network-based classifier consisting of four independent neural networks.

The selection of one of these two variants of realization of a neural network-based classifier can be carried out
based on evaluation of the computational complexity of hardware implementation of the relevant structures of the
neural network-based classifier.

To evaluate the computational complexity of the neural network, this network can be represented as a
hierarchical structure of the following type [13]:

ys = �(M, 1) (�(M, 1) (w (M, i), (�(M, – 1, i) (...))), �M(0, i) = ,s
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where X = <x, y>  is a collection of S precedents concerning the dependence y(x), x = {xs}, y = {ys}, s = 1,
2, ...S which are characterized by a set of  N input characteristics Njx j ,...,2,1},{ � , where j  is the number of

the characteristic, and an output characteristic y , }{,, s
j

sss xxyx ��� is the s -th precedent, where s
jx  is the

value of the j -th input and  ys is the value of the output characteristic for the s-th precedent (exemplar) of the
sample, {1, 2, ..., K},sy �  where  K is the number of classes, K > 1,
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M is the number of layers,
N� is the number of nodes (neurons) in the �-th layer,
�(�, i) is the discriminant (weight) function of the �-th node in the �-th layer,
�(�, i) is the activation function of the i-th node in the �-th layer,

( , )i
jw �  is the weight value of the j-th input of the i-th node in the �-th layer..

The structural complexity of a neural network model, whose main structural elements are neurons, can be
characterized by the number of neurons Nn , which can be determined for a multilayer neural network by the
formula [14]:

Nn =
M

= 1

N�
�
� (2)

The computational complexity of the i-th neuron in the �-th layer can be defined as :

T(�, j) = ( , ) ( , ) ( , ) ( , )N (T T ) T ,i i i i
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� � � �
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where  N(�, i) is the number of inputs of the i-th neuron in the �-th layer;
( , )T i
c
�  is the computational complexity of one synapse of the i-th neuron in the �-th layer;

( , )T i�
�  is the computational complexity of the discriminant function of the i-th neuron in the �-th layer for

processing two arguments;
( , )T i�
�  is the computational complexity of the activation function of the i-th neuron in the �-th layer..

The computational complexity of synapses, discriminant functions and activation functions are determined,
taking into account the conditions of hardware implementation of the neural network.

The computational complexity of the feedforward neural network under parallel implementation of calculations
(for example, under hardware implementation of the neural network on FPGA) will be defined by the formula:
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The logical transparency of the neural network largely depends on the total number of connections in the
neural network and the number of links that connect specific neurons (the number of inputs of the neurons in the
inner layers). The fewer the links, the simpler the neural network is, and so it is more convenient for analysis and
interpretation.

The sparsity coefficient of the links of the feedforward neural network is determined by the formula:
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where Nw = 0 is the number of the neural network’s weights equal to zero.
The connectivity coefficient of the multilayer neural network is defined as:
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The average connectivity coefficient  KM of the feedforward neural network shows the average number of
inputs of the neurons of all layers except the first one:

KM =
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where ),(
0
i

wN �
�  is the number of weights of the i -th neuron in the � -th layer that are equal to zero.
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The more unit synapses are in the neural network (the connections whose weights equal one in absolute
value), the easier its implementation is (especially, the hardware one) and the easier analysis and interpretation are
[15-16].

The share of unit synapses in the feedforward neural network is calculated by the formula:
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where Nw = 1  is the number of weights in the neural net that are equal to one in absolute value.
The share of non-unit synapses  KN  in the feedforward neural network is determined by the expression:
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Since the logical transparency of the neural network connections depends largely on the sparseness and
simplicity of connections, it is characterized by a coefficient showing the share of the binary (zero or one in absolute
value) weights among the total number of weights of the neural network [17-19].

The coefficient of logical transparency of the feedforward neural network connections is determined by the
expression:
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The coefficient  KS of logical non-transparency (fuzziness) of the feedforward neural network connections is
calculated as KS = 1 – KT = 1 – (KR + KL).

For more accurate evaluation of the logical transparency, one can define logical transparency of a neural
network in terms of the logical transparency of its elements.

The coefficient of logical transparency of the i -th neuron in the� -th layer of the neural network ),( i
EK �  is

determined by the type of the used activation function. For the linear and threshold activation functions: 1),( �i
EK � ,

for all other activation functions 0),( �i
EK �  [20-21].

The logical transparency coefficient of a multilayer neural network will be calculated as:
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The larger the coefficient KU, the higher is the logical transparency level of the neural network, and conversely,
the smaller the , the lower is the level of logical transparency of the neural network.

One of the most important characteristics of neural network models is the quality of approximation. The
approximation quality for the same error level is higher, when the number of the used weights is smaller [22-24].

The approximation quality coefficient of a neural network model is defined as the average proportion of errors
attributable to non-zero weights of the neural network [25-27]:

KA =
= 0

E

N – Nw w
(12)

where E is the total error made by the neural network (for example, the mean-square error). As the error E, one
can use the neural network training error (computed by the learning sample) or the work error of the neural
network (calculated by the test sample).
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It follows from the presented expressions that the computational complexity of the neural network grows
faster when the number of connections between the neurons of the inner layers increases; whereas for the hardware
implementation of neural network on FPGA, the total computational complexity of the neural network will be
determined by the maximum computational complexity of particular neurons. The logical transparency coefficient
of a multilayer neural network is inversely proportional to the product of the number of neurons in the adjacent
layers, whereas the approximation quality coefficient is inversely proportional to the number of neurons with nonzero
weights. Consequently, the use of a neural network with a complex structure, designed for determination of a large
number of classes of faults (i.e., containing a large number of neurons in the output layer) will be significantly more
costly in terms of computing resources and will have a lower coefficient of approximation quality in comparison
with using the set of four independent neural networks solving the limited classification problems on the selected
stages of the self-test procedure.

Thus, the most effective and advantageous solution is the implementation of a composite structure of neural
network-based classifier of faults occurring during remote modification of the intelligence of mobile robots for
space application, consisting of several neural networks (Figure 2):

• a neural network determining the type of fault (NN1);
• a neural network determining the place of occurrence of the fault (NN2);
• a neural network determining the fact of occurrence of more than one fault (NN3);
• a neural network of periodic diagnostics, operating in the online mode, after the transfer to the FPGA of

the control over the mobile robot for space application (NN4).

Fig. 2. Structure of the fault classifier consisting of four neural networks.

A generalized algorithm of fault classification is shown in Figure 3.

3. RESULTS

Consider the results of studying the operation of a neural network-based classifier in terms of its tolerance to
type I and type II errors.

To evaluate the tolerance of each neural network to the emergence of a type I error, simulation is carried
out of the neural network operation when applying to its input test vectors not participating in training and
corresponding only to the situations when there are no faults in the diagnosed scheme.

To evaluate the tolerance of each neural network to the occurrence of a type II error, the simulation is carried
out of the neural network operation when applying to its input the test vectors not participating in training and
corresponding only to the situations when there is a fault of a certain type in the diagnosed scheme.

The graph of dependence of the probability of type I and type II errors on the number of neurons in the inner
layer of NN1 is shown in Figure 4.
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Fig. 3. Structure of the fault classifier consisting of four neural networks.

Fig. 4. Dependence of the probability of type I and type II errors on the number of neurons in the inner layer of NN1.
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It can be seen from the graph that NN1 demonstrates higher resistance to the emergence of a type II error
than to a type I error. Given the greater significance of the former for the problem being solved, it is, of course, a
positive feature of the neural network determining the type of fault.

The graph of dependence of the probability of type I and type II errors on the number of neurons in the inner
layer of NN2 is shown in Figure 5.

Fig. 5. Dependence of the probability of type I and type II errors on the number of neurons in the inner layer of NN2.

The graph shows that NN2 demonstrates higher resistance to a type I error than to a type II error. A higher
probability of the occurrence of a type II error is associated with a large number of neurons in the output layer of
NN2 as compared with NN1.

The graph of dependence of the probability of type I and type II errors on the number of neurons in the inner
layer of NN3 is shown in Figure 6.

Fig. 6. Dependence of the probability of type I and type II errors on the number of neurons in the inner layer of NN3.

It can be observed in the graph that NN3 also exhibits higher resistance to a type I error than to a type II error.
A higher probability of the occurrence of type I or type II errors is related to the specifics of classification of the fact
of occurrence of more than one fault (to each class, there can correspond more than one active neuron in the output
layer of the neural network).
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Based on the simulation results, we can conclude that the total probability of a type I or type II error arising in
the classification of faults, the place of their occurrence and the fact of occurrence of multiple faults is rather large,
and its value cannot be neglected.

To improve the reliability of classification, we propose to evaluate the result of work of NN1, NN2 and
NN3 according to the following principle: the classification is considered successful and its result is transferred
for further analysis, provided all three neural networks confirm the presence or absence of a fault of a particular
type in the tested scheme, otherwise, the result of classification is considered unreliable and, to determine the
circuit state, it is required to apply additional methods of testing, such as deterministic methods of exhaustive
search of input actions, etc.

 With this approach, considering the probability of type I and type II errors in the operation of NN1, NN2
and NN3 independent of one another, the total probability of an error of type I or II will be calculated from the
expression:

PS = P1* P2 * P3, (13)
where P1 is the probability of occurrence of an error of type I or II in the operation of NN1,

P2  is the probability of occurrence of an error of type I or II in the operation of NN2,
P3 is the probability of occurrence of an error of type I or II in the operation of NN3.
The graph of dependence of the total probability of an error of type I or II, in accordance with the expression

(13), is shown in Figure 7.

Fig. 7. Dependence of the total probability of type I or II errors on the number of neurons in the inner
layer of neural networks included in the neural network-based classifier.

It can be concluded from the above graph that, when evaluating the performance of a neural network-based
classifier according to the proposed principle, the value of the total probability of errors of type I or II is within an
acceptable range for the class of problems being solved [5-7].

Neural network NN4 of the periodic diagnostics of the circuit state

For the periodic diagnostics of the state of the circuit, it is proposed to use a neural network that determines
the type of the arising fault (similar to NN1). Thus, such diagnostics will not require significant time and energy
costs and may be carried out at predetermined periods of operation of mobile robots for space application, not
requiring carrying out critical control tasks, for example, during battery recharging.

The periodic diagnostics of the state of the circuit, after the transfer of control to it, is intended to provide
additional control over the appearance of malfunctions during operation. The periodic diagnostics should solve the
problem of revealing the fact of malfunction. The problem of localization of the place of a fault or faults must be
solved within the framework of a self-test procedure which is launched after the transfer of control to the backup
FPGA on the basis of detection of a fault at the stage of periodic diagnostics.
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In this case, it is important that the periodic diagnostics should not require considerable time and energy costs,
because generally it needs to be carried out substantially more often than the self-test procedure.

Based on these considerations, for the periodic diagnostics of the circuit condition, it is proposed to use a
neural network that determines the type of the occurred fault that has the simplest structure and exhibits higher
resistance to the emergence of type II errors than type I errors. When an error is detected at the stage of periodic
diagnostics, a self-test procedure should be performed for the circuit that provides resistance to the errors of type
I and II.

Periodic diagnostics can be carried out at certain stages of functioning of mobile robots for space application
that do not require implementation of critical control tasks, for example, while recharging the batteries.

4. CONCLUSION

The proposed structure of the hardware-reconfigurable digital module of intelligent control of mobile robots
for space application is designed to enhance survivability and autonomy of mobile robots by using the technologies
of remote modification of intelligence based on reconfiguration of hardware, implemented on the basis of FPGA.
The developed concept combines the use of methods and technologies of artificial intelligence and the reconfiguration
capabilities of the FPGA hardware platform, including partial reconfiguration in real time as a means to deal with
the environment uncertainty. The practical implementation of this concept involves selective use of certain technologies
of knowledge processing depending on the specifics of the problems being solved, the features of the object being
controlled, its functional purpose, operating conditions, etc. The application of the developed technologies will
enhance the efficiency of use of mobile robots for space application and, as a consequence, reduce the costs of the
space missions.

The developed structure of the reconfiguration controller, performing neural network-based classification of
faults occurring during remote modification of intelligence of mobile robots for space application, will increase the
efficiency of the diagnostic support of mobile robots, since it is capable of changing diagnostic models at low
hardware levels, thus providing great flexibility of diagnostic algorithms and their adaptation to complex types of
malfunctions and failures that can occur in mobile robots for space application.

The developed software-algorithmic support of the reconfiguration controller provides a reliable solution to
the problem of repairing the faults, occurring in the process of remote modification of intelligence of mobile robots
for space application, by identifying the type of the occurred fault, the place of its appearance, as well as the fact
that more than one fault occurred.
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