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Abstract. In this paper, we develop Euler-Maruyama scheme for a wide-
ranging class of stochastic differential equations with regime switching under
such conditions that allow drift and diffusion coefficients being Hölder con-
tinuous. The strong convergence of the numerical method is proved. In
addition, the rate of convergence is obtained under similar conditions to the
case of usual diffusions. Some numerical examples are provided to illustrate
the results.

1. Introduction

This article is devoted to Euler-Maruyama scheme for a broad class of hybrid
stochastic differential equations (SDEs) known as regime switching diffusions that
may not satisfy common Lipschitz conditions. Because of their ability to demon-
strate both continuous dynamics and discrete events, regime switching diffusions
have gained a great deal of attention during the past three decades. They have
been used to model a wide variety of uncertain complex systems arising from real
world applications such as automatic control and differential games, economics,
financial engineering, manufacturing systems, mathematical biology, among oth-
ers. For complete lists of references, applications, together with comprehensive
and systematic treatments for switching diffusion systems we refer the interested
readers to the monographs [18,29,30].

Due to the nonlinearity and complexity of these equations, finding their analytic
solutions is a virtually impossible task, and developing approximation methods
for these solutions turns into a natural alternative [14,20]. Numerical schemes for
regime switching SDEs therefore have become an active area since the pioneer work
by Yuan and Mao [31] with numerous results on various aspects [11,12,15,16,19,22,
23,24,25,27,28,32,33]. See, for instance, [31] for Euler-Maruyama method, [24] for
weak Euler-Maruyama method, [22] for tamed-Euler method, [23] for Milstein-type
algorithm, [11, 32] for stability of numerical approximations, [33] for stabilization
of numerical solutions, [15] for approximation of invariant measures, [25, 27] for
numerical scheme for state-dependent switching systems, [28] for scheme for hybrid
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systems with jumps, [16] for approximation of delayed hybrid systems (see also
[12]). However, most of the aforementioned works (except [19], to the best of
our knowledge, which focuses on somewhat specific models) require the global
or local Lipschitz conditions for the drift and diffusion coefficients despite of a
vital fact that many models in reality violate these conditions. To illustrate this
and motivate our study, we present below three examples arising in applications,
including the constant elasticity of variance model, the Cox-Ingersoll-Ross model,
and the Longstaff interest rate model with regime-switchings, in which the common
assumptions of linear growth and Lipschitz continuity are violated.

Example 1.1. The first model we want to discuss is constant elasticity of variance
(CEV) model with Markov switching [6]. Suppose that the price process S(t) of
the risky asset S evolves over time according to the following stochastic differential
equation with regime-switching

dS(t) = µ(β(t))S(t)dt+ σ(β(t))Sθ(t)dW (t), S(0) = s > 0, (1.1)

where W (·) is a standard Brownian motion, β(·) is a Markov chain with finite
state space M, µ(i0) and σ(i0) ≥ 0, i0 ∈ M, are the appreciation rate and the
volatility of the risky asset S at time t, respectively, and 0 < θ < 1 is the constant
elasticity parameter.

This regime switching CEV process generalizes the standard CEV process by
replacing the constant market parameters with the corresponding market parame-
ters depending on a finite-state continuous-time Markov chain known as the regime
switching process. In [26], the authors mentioned that it is of practical importance
to allow the market parameters to respond to the movements of the general market
levels since the trend of general market levels is a key factor which governs the
price movements of individual risky assets. Regime switching models provide a
more realistic way to model the situation where the market parameters depend on
a market mode which switches among a finite number of states and reflects the
state of the underlying economy, the macro-economic condition, the general mood
of the investors in the market, business cycles and other economic factors.

Example 1.2. In this second example, we consider the Cox-Ingersoll-Ross (CIR)
model with regime switching [4,5]. The regime switching CIR model specifies that
the instantaneous interest rate follows the Markov-switching stochastic differential
equation

dr(t) = a(β(t))[b(β(t))− r(t)]dt+ σ(β(t))
√

r(t)dW (t), (1.2)

where W (·) is a Brownian motion modelling the random market risk factor, the
regime-switching process β(·) is Markov chain with finite state space M modelling
a random environment, and a(i0), b(i0), and σ(i0), i0 ∈ M, are the parameters.
The parameter a(i0) corresponds to the speed of adjustment, b(i0) to the mean
and σ(i0) to the volatility.

It should be noted that the standard Cox-Ingersoll-Ross model does not contain
the changes in regime. However, after the pioneer work in [7, 10] using regime-
switching models in economics, regime-switching behavior of interest rate models
have been widely used in interest rates modelling. Empirical evidence provided in
the finance literatures Aug and Bekaert [1,2] suggests that the switching of regimes
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in interest rates matches well with business cycles. In addition to the statistical
evidence, there are economic reasons as well to believe that the regime shifts are
important to understand the behavior of entire process. As shown in [3], based on
the empirical data of US. treasure yields, the poor empirical performance of the
standard CIR model without switching may well suggest the existence of regime
shifts. Furthermore, a generalisation of the CIR model, in which

√
r(t) is replaced

by [r(t)]γ with γ > 0, was investigated in [8].

While the drift terms of the CEV model and CIR model are still Lipschitz
continuous, this property is no longer valid in the following Longstaff model.

Example 1.3. In this example, let us consider the Longstaff interest rate model
with regime-switching [17], which is also known as the double square root model
of stochastic interest rate, described by the following equation

dr(t) = κ(β(t))
[
θ(β(t))−

√
r(t)

]
dt+ σ(β(t))

√
r(t)dW (t), (1.3)

where W (·) is a Brownian motion, β(·) is a continuous time Markov chain, and
κ(i0), θ(i0), and σ(i0), i0 ∈ M, are constant parameters.

This interest rate process is similar to the CIR model with regime switching
since the interest rate is elastically drawn toward central value. However, the
restoring force in (1.3) is proportional to θ(β(t)) −

√
r(t), rather than θ(β(t)) −

r(t). This nonlinear restoring force has many implications in the behavior of
the interest rate. Longstaff reported in [17] that this so-called nonlinear term
structure outperforms the CIR model in describing actual Treasury Bill yields
for the period of 1964-1986. In that paper, he used the GMM to estimate the
parameter. Adopting his double square root process to specify the interest rates,
we obtain the risk-neutral process described by equation (1.3).

As seen from the above examples, Lipschitz and local Lipchitz conditions are not
satisfied in many applications. Nevertheless, relaxing these conditions in approxi-
mating solutions of regime-switching SDEs brings a lot of challenges. In existing
literature, these conditions play an important role in proving key estimates for
the differences of the drift and diffusion coefficients to establish the convergence
as well as obtain the rate of convergence of numerical methods. Lacking of these
properties naturally requires new approaches. However, different from the cases
of usual diffusions, many powerful tools have not been well-studied for hybrid sys-
tems such as Malliavin calculus and heat kernel estimates. In this paper, in order
to overcome these difficulties, we shall use the Yamada-Watanabe approximation
to approximate the function φ(x) = |x| by differentiable functions (see [9,21]) and
then study Euler-Maruyama scheme for regime-switching SDEs without assuming
Lipchitz conditions. Under reasonable conditions on Hölder continuity of the co-
efficients, the convergence for this scheme is proved and the convergence rate is
asserted. The appearance of the switching process modulated in our present sys-
tem on one hand makes the problem more complicated since continuous dynamics
and discrete events coexist and are intertwined. On the other hand, it leads to
several additional terms which require substantial improvements to estimate.

The rest of the paper is organized as follows. In the next section, we will
formulate the problem and introduce the assumptions. The numerical method and
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some preliminary estimates are also included in this part. The rates of convergence
of the numerical method are provided and proved in Section 3. Section 4 is devoted
to the simulation results. Finally, Section 5 includes some further discussions. In
order to keep the presentation more transparent, proofs of some technical lemmas
are relegated in an appendix at the end of the paper.

2. Numerical Methods and Main Results

2.1. Formulation. Let (Ω,F ,P) be a complete probability space. On this prob-
ability space, let W (·) be a real-valued, standard Brownian motion, {β(t), t ≥ 0}
be a Markov chain that takes values in the finite set M = {1, 2, . . . ,m0}, and Y0 be
an R-valued random variable. We assume that W (·), β(·), and X0 are independent
throughout the paper. We consider the following SDEs

dX(t) = b(t,X(t), β(t))dt+ σ(t,X(t), β(t))dW (t), t ∈ [0, T ],

X(0) = Y0,
(2.1)

for some T > 0, where b(·, ·, ·) : [0, T ]×R×M → R and σ(·, ·, ·) : [0, T ]×R×M → R
are given functions and E |X0|p < ∞.

Assumption A. We assume that b = u + v where v is monotone decreasing, and
there exists constantsK > 0, γ ∈ (0, 1], and θ ∈ [0, 1/2] such that for any t ∈ [0, T ],
x ∈ R, y ∈ R, and i0 ∈ M ,

A1. |u(t, x, i0)− u(t, y, i0)| ≤ K|x− y|.
A2. |v(t, x, i0)− v(t, y, i0)| ≤ K|x− y|γ .
A3. |σ(t, x, i0)− σ(t, y, i0)| ≤ K|x− y|θ+1/2.
A4. |u(t, 0, i0)|+ |v(t, 0, i0)|+ |σ(t, 0, i0)| ≤ K.

Combining Assumptions A1, A2 and A4, we derive that for all t ∈ [0, T ], for all
x ∈ R, and for all q ≥ p > 0,

|b(t, x, i0)|p ≤ K(1 + |x|q). (2.2)

Also, it follows from Assumptions A3 and A4 that for all t ∈ [0, T ], for all x ∈ R,
and for all p > 0 and q ≥ (θ + 1/2)p,

|σ(t, x, i0)|p ≤ K(1 + |x|q). (2.3)

In the next remark we will point out that Assumption (A) is valid for all examples
mentioned in Section 1.

Remark 2.1. i) In Example 1.1, b(t, x, i0) = µ(i0)x and σ(t, x, i0) = σ(i0)x
θ. It

is easily seen that the drift coefficient is Lipschitz continuous and the diffusion
coefficient is θ-Hölder continuous.
ii) Similarly, in Example 1.2, the drift b(t, x, i0) = a(i0)(b(i0) − x) is Lipschitz

continuous and the diffusion σ(t, x, i0) = σ(i0)
√
x is Hölder continuous of order

1/2.
iii) In Example 1.3, the drift coefficient can be decomposed into two terms:
u(t, x, i0) = κ(i0)θ(i0) is Lipschitz continuous and v(t, x, i0) = κ(i0)

√
x is 1/2-

Hölder continuous. The diffusion coefficient σ(t, x, i0) = σ(i0)
√
x is Hölder con-

tinuous of order 1/2.
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To proceed, we present a result concerning the existence and uniqueness of
solutions of the hybrid SDEs under Assumption (A). For convenience, a proof of
the following proposition is provided in the Appendix.

Proposition 2.2. Under Assumption (A), equation (2.1) has a unique solution.

2.2. Numerical Methods. Let h > 0 be the step size. Put Nt = �t/h�. For
any k ≥ 1, we define ζh : [0, T ] → [0, T ] by

ζh(t) = kh := thk if t ∈ [kh, (k + 1)h).

Construction of the Markov chain β(t). To generate a continuous-time
Markov chain with a given generator Q = (qi0j0) ∈ Rm0×m0 , we quote the method
of constructing the Markov chain from [29], Section 2.4. Constructing the sample
paths of β(t) requires determining its sojourn time at each state and its subsequent
moves. The chain sojourns in any given state i0, i0 ∈ M, for a random length
of time, ζi0 , which has an exponential distribution with parameter −qi0i0 . Subse-
quently, the process will enter another state. Each state j0 (with j0 ∈ M, j0 �= i0)
has a probability qi0j0/(−qi0i0) of being the chain’s next residence. The post-
jump location is determined by a discrete random variable Zi0 taking values in
{1, 2, . . . , i0 − 1, i0 + 1, . . . ,m0}. Its value is specified by

Zi0 =




1 if Ẑ ≤ qi01/(−qi0i0),

2 if qi01/(−qi0i0) < Ẑ ≤ (qi01 + qi02)/(−qi0i0),
...

...

m0 if
∑

j0 �=i0,j0<m0
qi0j0/(−qi0i0) ≤ Ẑ,

(2.4)

where Ẑ is a random variable uniformly distributed in (0, 1). Thus, the sample
path of β(t) is constructed by sampling from exponential and uniform random
variables alternately. With the β(t) generated above, set β(ζh(t)) = β(kh) = β(thk)
if t ∈ [kh, (k+1)h) for h > 0 and k = 0, 1, . . ., which is the h-skeleton of the Markov
chain.
Euler-Maruyama scheme. We consider the following Euler-Maruyama scheme
for the solution of equation (2.1)

Y h
0 = X0,

Y h
k+1 = Y h

k + hb(thk , Y
h
k , βh

k ) + σ(thk , Y
h
k , βh

k )∆
h
kW for all k ≥ 0,

where βh
k = β(thk) and ∆h

kW = W (thk+1) − W (thk). If b(·, ·, ·) and σ(·, ·, ·) satisfy
Assumption (A), we define the continuous-time interpolation of the approximation
as

Y h(t) = X0+

∫ t

0

b(s, Y h(ζh(s)), β(ζh(s)))ds+

∫ t

0

σ(s, Y h(ζh(t)), β(ζh(t)))dW (s).

(2.5)
It is clear that Y h(thk) = Y h

k . In the next section, for convenience, we will use
Y h(t) to approximate solution X(t) of (2.1).
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2.3. Preliminary Estimates. Denote

Ỹ h(t) = Y h(t)− Y h(ζh(t)), Ŷ h(t) = X(t)− Y h(t). (2.6)

We have the following estimate on the bound of the moment of Y h(t). (See Ap-
pendix A.2 for the proof)

Lemma 2.3. Suppose that Assumptions A1 to A4 hold and p > 0. If E |X0|p < ∞
then there exists a constant C such that

sup
h>0

E

[
sup

t∈[0,T ]

∣∣Y h(t)
∣∣p
]
< C. (2.7)

The bound of the moment of Ỹ h(t) can be estimated as follow. (See Appendix A.3
for the proof).

Lemma 2.4. Let p > 0. If E |X0|max{p,1+2θ} < ∞ then under Assumptions A1
to A4 there exists a constant C such that

sup
t∈[0,T ]

E |Ỹ h(t)|p ≤ Chp/2, (2.8)

As a result, for any � > 0,

E
(∫ t

0

|Ỹ h(t)|�ds
)p

≤ Ch�p/2, (2.9)

where C > 0 is a constant only depending on p and E |X0|max{�,�p,1+2θ} < ∞.

In the proofs of the main theorems and the Theorem 2.7 below, we will use the
Yamada-Watanabe method to approximate the function ϕ(x) = |x|. Let δ > 1
and ε > 0. Then

∫ ε

ε/δ
dx
x = ln δ and therefore there is a continuous nonnegative

function ψ(x), x ∈ [0,∞), which is zero outside [ε/δ, ε], has integral 1 and satisfies
ψ(x) ≤ 2

x ln δ (see [13, p. 168]). Define

φ(x) =

∫ |x|

0

∫ y

0

ψ(z)dzdy, x ∈ R. (2.10)

We have the following remark on the properties of φ(x).

Remark 2.5. For any x ∈ R, the following properties hold true:

(a) |x| ≤ ε+ φ(x).
(b) φ′(x) = x

|x|φ
′(|x|).

(c) 0 ≤ φ′(|x|) ≤ min
{
1, δ|x|

ε

}
.

(d) φ′′(x) = ψ(|x|) ≤ 2
|x| ln δ11[ε/δ,ε](|x|).

More details on these properties can be found in [13, p. 168].

Denote

Uh(s) =
∣∣b(s, Y h(ζh(s)), β(s))− b(s, Y h(ζh(s)), β(ζh(s)))

∣∣ , (2.11)

V h(s) =
∣∣σ(s, Y h(ζh(s)), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))

∣∣2 , (2.12)
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and

Lh(t) =

∫ t

0

φ′(Ŷ h(s))
[
σ(s,X(s), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))

]
dW (s).

(2.13)

To proceed, we need the following estimates for Uh(t) and V h(t). (See Appen-
dix A.4 for the proof)

Lemma 2.6. Suppose that Assumptions A1 to A4 hold and let � be a positive
constant. If E |X0|� < ∞, then there exists a constant C such that

E
∫ t

0

[
Uh(s)

]�
ds ≤ Ch. (2.14)

Similarly, if E |X0|(1+2θ)� < ∞, then there exists a constant C such that

E
∫ t

0

[
V h(s)

]�
ds ≤ Ch. (2.15)

By using the properties of the function φ introduced in Theorem 2.5 and Itô’s

formula, the next theorem allows us to estimate |Ŷ h(t)| and provides a key step
to prove the main theorems. (See Appendix A.5 for the proof)

Proposition 2.7. Suppose that Assumptions A1 to A3 hold. Then

|Ŷ h(t)| ≤
[
ε+

Ctε2θ

ln δ

]
+K

∫ t

0

|Ŷ h(s)|ds+K

∫ t

0

[∣∣∣Ỹ h(s)
∣∣∣+

∣∣∣Ỹ h(s)
∣∣∣
γ

+ Uh(s)
]
ds

+
Cδ

ε ln δ

∫ t

0

[∣∣∣Ỹ h(s)
∣∣∣
1+2θ

+ V h(s)

]
ds+ Lh(t).

(2.16)

It is worth mentioning that, different from the case of common diffusion, the
estimate in Theorem 2.7 is not enough to prove the convergence or convergence
rate when p ≥ 2. Therefore, in order to deal with this case, we need another result.
To proceed, for each t ∈ [0, T ], we define

Zh(t) = sup
s∈[0,t]

∣∣∣Ŷ h(s)
∣∣∣ . (2.17)

We have the following proposition.

Proposition 2.8. Suppose that Assumptions A1 to A3 hold. If E |X0|p < ∞ then
for all p ≥ 2,

E
∣∣Zh(t)

∣∣p ≤ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−1+2θ

ds+ C
[
hpγ/2 + h+ h(p−1+2θ)/2

]
.

In particular, if θ = 1/2 then

E
∣∣Zh(t)

∣∣p ≤ C
(
hpγ/2 + h

)
.
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3. Rates of Convergence

In order to prove Theorem 3.4, we need the following theorem whose proof is
put in Appendix A.7.

Lemma 3.1. Let (Ŷ (t))t≥0 be a nonnegative stochastic process and put Z(t) =

sup0≤s≤t Ŷ (s). Assume that for some p > 0, q ≥ 1, ρ ∈ [1, q] and constants K1,K2

and δ ≥ 0

E[Z(t)]p ≤ K1 E
∫ t

0

[Z(s)]pds+K2 E
[∫ t

0

Y ρ(s)ds

]p/q
+ δ < ∞, (3.1)

for all t ∈ [0, T ]. Then the following statements hold

(1) If ρ = q then there exists a constant C depending on K1,K2, ρ, q and p, such
that for all t ∈ [0, T ],

E[Z(t)]p ≤ δ exp
(
Ct+ Ctmax{p/q,1}

)
.

In particular, there is a constant C such that

E[Z(T )]p ≤ C1δ. (3.2)

The constant C1 depends only on C, p, q and ρ, and increases in T .
(2) If ρ ∈ [1, q) and, in addition, if p ≥ q or p > q + 1 − ρ, then there exists a
constant C, depending on K1,K2, ρ, q and p, such that for all t ∈ [0, T ],

E[Z(t)]p ≤ eCt

[
Ct

(p−1)max{p−q,0}
p(q−ρ)

∫ t

0

E[Ŷ (s)]ds+ δ

]
. (3.3)

In particular, there exist constants C1 and C2 such that

E[Z(T )]p ≤ C1δ + C2

∫ T

0

E[Ŷ (s)]ds. (3.4)

The constants C1 and C2 depend only on C, p, q and ρ, and increases in T .

The same results can also be achieved if inequality (3.1) is replaced by

E[Z(t)]p ≤ K1 E
[∫ t

0

Z(s)ds

]p
+K2 E

[∫ t

0

[Ŷ (s)]ρds

]p/q
+ δ < ∞. (3.5)

The main results of this section are presented in the following theorems and
corollaries.

Theorem 3.2. Suppose that Assumption (A) holds. If E |X0|1+2θ < ∞ then there
exists a constant C such that for all h,

sup
τ∈T

E
∣∣X(τ)− Y h(τ)

∣∣ ≤
{

C
| ln(h)| if θ = 0,

Chmin{θ,γ/2} if 0 < θ ≤ 1/2,

where T is the set of all stopping times τ ≤ T .

Proof. Let Uh(s), V h(s), and Mh(s) be the notations introduced in Theorem 2.7.
We can derive from Theorem 2.6 that

E
∫ t

0

Uh(s)ds ≤ Ch, (3.6)
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and

E
∫ t

0

V h(s)ds ≤ Ch. (3.7)

Besides, owing to Theorems 2.4 and 2.6, it follows from Theorem 2.7 that

E |Ŷ h(t)|

≤
[
ε+

Ctε2θ

ln δ

]
+K

∫ t

0

E |Ŷ h(s)|ds+K

∫ t

0

E
[∣∣∣Ỹ h(s)

∣∣∣+
∣∣∣Ỹ h(s)

∣∣∣
γ]

ds

+ E
∫ t

0

Uh(s)ds+
Cδ

ε ln δ

∫ t

0

E
[∣∣∣Ỹ h(s)

∣∣∣
1+2θ

+ V h(s)

]
ds

≤ K

∫ t

0

E |Ŷ h(s)|ds+ ε+ C
(
h1/2 + hγ/2

)
+

Cε2θ

ln δ
+

Cδ

ε ln δ

(
hθ+1/2 + h

)
.

(3.8)

Let Y
h
(t) =

∣∣∣Ŷ h(t ∧ τ)
∣∣∣ for any stopping time τ ≤ T . Then inequality (3.8)

becomes

E[Y h
(t)] ≤ K

∫ t

0

E[Y h
(s)]ds

+ C

[
ε+ h1/2 + hγ/2 +

ε2θ

ln δ
+

δ

ε ln δ

(
hθ+1/2 + h

)]
.

By Gronwall’s inequality

E[Y h
(t)] ≤ C

[
ε+ h1/2 + hγ/2 +

ε2θ

ln δ
+

δ

ε ln δ

(
hθ+1/2 + h

)]
.

If 0 < θ ≤ 1/2 then, by choosing ε = h1/2 and δ = 2, we obtain

E[Y h
(t)] ≤ Chmin{θ,γ/2}.

Letting t → ∞ yields

sup
τ∈T

E
∣∣X(τ)− Y h(τ)

∣∣ ≤ Chmin{θ,γ/2}.

If θ = 0 then, by choosing ε = 1
| ln(h)| and δ = h−1/3, we arrive at

E[Y h
(t)] ≤ C

| ln(h)|
.

Letting t → ∞ yields

sup
τ∈T

E
∣∣X(τ)− Y h(τ)

∣∣ ≤ C

| ln(h)|
.

�

Corollary 3.3. Under Assumption (A), if E |X0|1+2θ < ∞, then there exists a
constant C such that for all h > 0,

E
[

sup
0≤t≤T

∣∣X(t)− Y h(t)
∣∣
]
≤





C√
| ln(h)|

if θ = 0,

Chmin{2θ2,θγ} if 0 < θ ≤ 1/2.
(3.9)
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Proof. Recall that Zh(t) = sups∈[0,t]

∣∣∣Ŷ h(s)
∣∣∣. In order to estimate Zh(t), we can

use Theorem 2.7, in light of Theorems 2.4 and 2.6, to derive

E
[
Zh(t)

]
≤ K

∫ t

0

E
[
Zh(s)

]
ds+

[
ε+

Cε2θ

ln δ

]
+ C(h1/2 + hγ/2 + h)

+
Cδ

ε ln δ
(hθ+1/2 + h) + E sup

s∈[0,t]

∣∣Lh(s)
∣∣ ,

(3.10)

where Lh(s) is defined by equation (2.13). It remains to estimate Lh(s). To do
so, put

Lh
1 (t)

= C E
(∫ t

0

∣∣σ(s, Y h(ζh(s)), β(s))− σ(s, Y h(ζh(s)), β(ζh(s))
∣∣2 ds

)1/2

.
(3.11)

An application of Burkholder-Davis-Gundy inequality, by virtue of Assumption A3,
leads to

E sup
s∈[0,t]

∣∣Mh(s)
∣∣

≤ C E
(∫ t

0

∣∣∣φ′(Ŷ h(s))
∣∣∣
2

|σ(s,X(s), β(s))

− σ(s, Y h(ζh(s)), β(ζh(s)))|2ds
)1/2

≤ C E
(∫ t

0

∣∣σ(s,X(s), β(s))− σ(s, Y h(s), β(s))
∣∣2 ds

)1/2

+ C E
(∫ t

0

∣∣σ(s, Y h(s), β(s))− σ(s, Y h(ζh(s)), β(s))
∣∣2 ds

)1/2

+ Lh
1 (t)

≤ C E
(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
1+2θ

ds

)1/2

+ C E
(∫ t

0

∣∣∣Ỹ h(s)
∣∣∣
1+2θ

ds

)1/2

+ Lh
1 (t),

(3.12)

where Lh
1 (t) is defined by equation (3.11). It follows from Theorem 2.4 that

E
[∫ t

0

∣∣Ỹ h(s)
∣∣1+2θ

ds

]1/2
≤ Ch(1+2θ)/4. (3.13)

Observe that for all s ∈ (thk , t
h
k+1) and i0 ∈ M the following inequality holds

P
(
β(s) �= i0, β(t

h
k) = i0

∣∣∣Fthk

)
= P

(
β(s) �= i0

∣∣∣β(thk) = i0

)
11{β(thk)=i0}

≤ Ch.
(3.14)

Besides, Lh
1 (t) can be written as

Lh
1 (t) =

C

[ Nt∑
k=0

∫ thk+1∧t

thk

E
∣∣σ(s, Y h(thk), β(s))− σ(s, Y h(thk), β(t

h
k))

∣∣2 11{β(s)�=β(thk)}ds
]1/2

.
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Thus, we can estimate Lh
1 (t), in view of inequality (2.3), as follows

Lh
1 (t)

= C

{
Nt∑
k=0

∫ thk+1∧t

thk

E
[
E
( ∣∣σ(s, Y h(thk), β(s))− σ(s, Y h(thk), β(t

h
k))

∣∣2

× 11{β(s)�=β(thk)}
∣∣∣Fthk

)]
ds

}1/2

= C

{
Nt∑
k=0

∫ thk+1∧t

thk

m0∑
i0=1

E
[
E
( ∣∣σ(s, Y h(thk), β(s))− σ(s, Y h(thk), i0)

∣∣2

× 11{β(s)�=i0,β(thk)=i0}
∣∣∣Fthk

)]
ds

}1/2

≤ C

{
Nt∑
k=0

∫ thk+1∧t

thk

∑
1≤i0 �=j0≤m0

E
[ ∣∣σ(s, Y h(thk), j0)− σ(s, Y h(thk), i0)

∣∣2

× E
(
11{β(s)=j0,β(thk)=i0}

∣∣∣Fthk

)]
ds

}1/2

= C

[
Nt∑
k=0

∫ thk+1∧t

thk

∑
1≤i0 �=j0≤m0

E
[ ∣∣σ(s, Y h(thk), j0)− σ(s, Y h(thk), i0)

∣∣2

× P
(
β(s) = j0, β(t

h
k) = i0

∣∣∣Fthk

)]
ds

]1/2

≤ C

[
h

Nt∑
k=0

∫ thk+1∧t

thk

(
1 + E

∣∣Y h(thk)
∣∣2) ds

]1/2

≤ Ch1/2.

(3.15)
Note that we have used the estimate (3.14) in the last line of inequality (3.15).
As a result, substituting inequalities (3.12), (3.13) and (3.15) into inequal-

ity (3.10) leads to

E
[
Zh(t)

]
≤ K

∫ t

0

E
[
Zh(s)

]
ds+

[
ε+

Cε2θ

2 ln δ

]
+ C(h1/2 + hγ/2)

+
Cδ

2ε ln δ
(hθ+1/2 + h) + C E

(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
1+2θ

ds

)1/2

+ Ch(1+2θ)/4 + Ch1/2,

which can be simplified as follows

E
[
Zh(t)

]
≤ K

∫ t

0

E
[
Zh(s)

]
ds+

[
ε+

Cε2θ

2 ln δ

]
+ C(h1/2 + hγ/2 + h(1+2θ)/4)

+
Cδ

2ε ln δ
(hθ+1/2 + h) + C E

(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
1+2θ

ds

)1/2

.

(3.16)
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In order to estimate the first integral E
(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
1+2θ

ds

)1/2

on the right-hand

side of inequality (3.16), we consider two cases:
Case 1: θ = 0. By using Jensen’s inequality and Theorem 3.2, we get

E
(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣ ds

)1/2

≤
(∫ t

0

E
∣∣∣Ŷ h(s)

∣∣∣ ds
)1/2

≤ C√
| ln(h)|

,

which, in view of inequality (3.16) with ε = 1
| ln(h)| and δ = h−1/3, implies that

E
[
Zh(t)

]
≤ C

∫ t

0

E
[
Zh(s)

]
ds+

C√
| ln(h)|

,

This inequality, in light of Gronwall’s inequality, verifies inequality (3.9) for θ = 0.
Case 2: θ ∈ (0, 1/2]. By using Jensen’s inequality, Cauchy’s inequality, and Theo-
rem 3.2, we deduce that for any ε1 > 0,

E
(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
1+2θ

ds

)1/2

≤ E
(
Zh(t)

∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
2θ

ds

)1/2

≤ ε1 E
[
Zh(t)

]
+

1

4ε1

∫ t

0

E
∣∣∣Ŷ h(s)

∣∣∣
2θ

ds

≤ ε1 E
[
Zh(t)

]
+

1

4ε1

∫ t

0

(
E
∣∣∣Ŷ h(s)

∣∣∣
)2θ

ds

≤ ε1 E
[
Zh(t)

]
+

C

4ε1
hmin{2θ2,γθ},

which, taking into account inequality (3.16) with ε = h1/2, δ = 2, and ε1 = 1
2C ,

implies that

E
[
Zh(t)

]
≤ C

∫ t

0

E
[
Zh(s)

]
ds+ Chmin{2θ2,γθ}.

This inequality together with Gronwall’s inequality verifies inequality (3.9) for
θ ∈ (0, 1/2]. �

The above corollary gives an estimate for the 1st moment of the error. Regard-
ing to an estimate for its p-th moment, we have the following theorem.

Theorem 3.4. Under Assumption (A), if p ≥ 2 and E |X0|(1+2θ)p < ∞, then
there exists a constant C such that for all h > 0,

E
[

sup
0≤t≤T

∣∣X(t)− Y h(t)
∣∣p
]
≤




C
| ln(h)| if θ = 0,

Chmin{θ,γ/2} if θ ∈ (0, 1/2),

Chmin{1,pγ/2} if θ = 1/2.

(3.17)
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Proof. Bearing in mind Theorem 2.7, similar arguments used in the proof of The-
orem 3.5 show that

|Ŷ h(t)|p ≤ C

[
ε+

tε2θ

ln δ

]p
+ C

(∫ t

0

[∣∣∣Ỹ h(s)
∣∣∣+

∣∣∣Ỹ h(s)
∣∣∣
γ]

ds

)p

+ C

(
δ

ε ln δ

)p
[(∫ t

0

∣∣∣Ỹ h(s)
∣∣∣
1+2θ

ds

)p

+

(∫ t

0

V h(s)ds

)p
]

+ C

(∫ t

0

|Ŷ h(s)|ds
)p

+ C

(∫ t

0

Uh(s)ds

)p

+ C
∣∣Lh(t)

∣∣p .

(3.18)

We will evaluate all terms on the right side of inequality (3.18) and then use
Theorem 3.1 to get the desired estimate as follows. Taking into consideration
Theorem 2.6, we obtain

E
(∫ t

0

Uh(s)ds

)p

≤ C

∫ t

0

E
[
Uh(s)

]p
ds ≤ Ch,

and

E
(∫ t

0

V h(s)ds

)p

≤ C

∫ t

0

E
[
V h(s)

]p
ds ≤ Ch.

Likewise, Theorem 2.4 implies

E
(∫ t

0

∣∣∣Ỹ h(s)
∣∣∣ ds

)p

≤ hp/2, E
(∫ t

0

∣∣∣Ỹ h(s)
∣∣∣
γ

ds

)p

≤ hpγ/2,

and

E
(∫ t

0

∣∣∣Ỹ h(s)
∣∣∣
1+2θ

ds

)p

≤ h(θ+1/2)p.

Consequently, inequality (3.18) leads to

E
[
Zh(t)

]p ≤ C E
[∫ t

0

Zh(s)ds

]p
+ C

[
ε+

ε2θ

ln δ

]p
+ C(hp/2 + hpγ/2)

+ Ch+

(
δ

ε ln δ

)p

C
(
h(θ+1/2)p + h

)
+ E sup

s∈[0,t]

∣∣Lh(s)
∣∣p .

(3.19)

It is remaining to estimate Lh(t). We first put

Lh
2 (t) = E

(∫ t

0

∣∣σ(s, Y h(ζh(s)), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))
∣∣2 ds

)p/2

.

We will estimate Lh
2 (t) first.
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On one hand, Hölder’s inequality, Theorem 2.3, and inequality (2.3) in that
order yield

Lh
2 (t) ≤ tp/2−1 E

∫ t

0

∣∣σ(s, Y h(ζh(s)), β(s))− σ(s, Y h(ζh(s)), β(ζh(s))
∣∣p ds

≤ Ctp/2−1
Nt∑
k=0

∫ thk+1∧t

thk

m0∑
i0=1

E
∣∣σ(s, Y h(thk), β(s))− σ(s, Y h(thk), i0)

∣∣p

× 11{β(s)�=i0,β(thk)=i0}ds

≤ Ctp/2−1
Nt∑
k=0

∫ thk+1∧t

thk

∑
1≤i0 �=j0≤m0

E
[ ∣∣σ(s, Y h(thk), j0)− σ(s, Y h(thk), i0)

∣∣p

× P
(
β(s) = j0, β(t

h
k) = i0

∣∣∣Fthk

)]
ds

≤ Ch

Nt∑
k=0

∫ thk+1∧t

thk

(
1 + E

∣∣Y h(thk)
∣∣p) ds ≤ Ch.

(3.20)
On the other hand, applying Burkholder-Davis-Gundy inequality to

Lh(t) =

∫ t

0

φ′(Ŷ h(s))
[
σ(s,X(s), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))

]
dW (s),

and taking note of Assumption A3, one can arrive at the following inequality

E sup
s∈[0,t]

∣∣Lh(s)
∣∣p

≤ C E
(∫ t

0

∣∣∣φ′(Ŷ h(s))
∣∣∣
2 ∣∣σ(s,X(s), β(s))− σ(s, Y h(ζh(s)), β(ζh(s))

∣∣2 ds
)p/2

≤ C E
(∫ t

0

∣∣σ(s,X(s), β(s))− σ(s, Y h(s), β(s))
∣∣2 ds

)p/2

+ C E
(∫ t

0

∣∣σ(s, Y h(s), β(s))− σ(s, Y h(ζh(s)), β(s))
∣∣2 ds

)p/2

+ CLh
2 (t)

≤ C E
(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
1+2θ

ds

)p/2

+ C E
(∫ t

0

∣∣∣Ỹ h(s)
∣∣∣
1+2θ

ds

)p/2

+ CLh
2 (t).

(3.21)
Besides, Theorem 2.4 yields

E
(∫ t

0

∣∣∣Ỹ h(s)
∣∣∣
1+2θ

ds

)p/2

≤ Ch(1+2θ)p/4. (3.22)

It follows from inequalities (3.20) to (3.22) that

E sup
s∈[0,t]

∣∣Lh(s)
∣∣p ≤ C E

(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
1+2θ

ds

)p/2

+ Ch(1+2θ)p/4 + Ch. (3.23)

336



EM METHOD FOR REGIME SWITCHING SDES W/ HÖLDER COEFFICIENTS 15

Combining inequalities (3.19) and (3.23), we get

E
[
Zh(t)

]p ≤ C E
[∫ t

0

Zh(s)ds

]p
+ C

[
ε+

ε2θ

ln δ

]p
+ C

(
hpγ/2 + h+ h(1+2θ)p/4

)

+

(
δ

ε ln δ

)p

Ch+ C E
(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
1+2θ

ds

)p/2

.

(3.24)

In (3.24), the term
(

δ
ε ln δ

)p
Ch(θ+1/2)p is eliminated because (θ+1/2)p ≥ 1. Since

Theorem 2.8 showed that

E
[
Zh(t)

]p ≤ Chmin{1,pγ/2}

when θ = 1/2, it is sufficient to prove this theorem for θ ∈ [0, 1/2). We consider
two cases:
Case 1: θ = 0. Choosing δ = h− 1

p+1 and ε = 1
| ln(h)| , we derive from inequal-

ity (3.24) that

E
[
Zh(t)

]p ≤ C E
[∫ t

0

Zh(s)ds

]p
+ C E

(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣ ds

)p/2

+
C

| ln(h)|p
.

(3.25)
By virtue of Theorem 3.2 and Theorem 3.1 with p ≥ q = 2 and ρ = 1, inequal-
ity (3.25) yields

E
[
Zh(t)

]p ≤ C

| ln(h)|p
+ C

∫ t

0

E
∣∣∣Ŷ h(s)

∣∣∣ ds ≤ C

|lnh|
.

Case 2: θ ∈ (0, 1/2). We choose δ = 2 and ε = h
1
2p . Inequality (3.24) becomes

E
[
Zh(t)

]p ≤ C E
[∫ t

0

Zh(s)ds

]p
+ C

(
hpγ/2 + hθ

)

+ C E
(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
1+2θ

ds

)p/2

.

(3.26)

It can be derived from inequality (3.26) and Theorem 3.1 (with p ≥ q = 2 and
ρ = 1 + 2θ < 2) that

E
[
Zh(t)

]p ≤ C
(
hpγ/2 + hθ

)
+

∫ t

0

E
∣∣∣Ŷ h(s)

∣∣∣ ds.

According to Theorem 3.2,

∫ t

0

E
∣∣∣Ŷ h(s)

∣∣∣ ds ≤ Chmin{θ,γ/2}.

Therefore,

E
[
Zh(t)

]p ≤ Chmin{θ,γ/2}.

These completes the proof of the theorem. �
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Corollary 3.5. Under Assumption (A), if 0 < p < 2 and E |X0|2(1+2θ) < ∞, then
there exists a constant C such that for all h > 0,

E
[

sup
0≤t≤T

∣∣X(t)− Y h(t)
∣∣p
]
≤




C
| ln(h)|p/2 if θ = 0,

Chmin{pθ/2,pγ/4} if θ ∈ (0, 1/2),

Chpγ/2 if θ = 1/2.

Proof. If 0 < p < 2 then Lyapunov inequality implies that

E

(
sup

t∈[0,T ]

∣∣Y h(t)−X(t)
∣∣p
)

≤

[
E

(
sup

t∈[0,T ]

∣∣Y h(t)−X(t)
∣∣2
)]p/2

. (3.27)

For our purpose here, we also consider three cases: θ = 0, θ = 1/2, and θ ∈ (0, 1).
Using inequality (3.27) and the corresponding results obtained in Theorem 3.4,
we can get the desired estimates. For instance, if θ = 0 then we deduce from
inequality (3.27) that

E

(
sup

t∈[0,T ]

∣∣Y h(t)−X(t)
∣∣p
)

≤
[

C

| ln(h)|

]p/2
≤ C

| ln(h)|p/2
.

Similar arguments can be used for other cases. This completes the proof of the
theorem. �

Remark 3.6. Theorems 3.2 and 3.5 extend the results in [9] for the case Markovian
switching diffusions. In fact, we obtain the same rates of convergence. Regarding
to the strong convergence in Lp sense for the Euler-Maruyama approximation with
and without Markovian switching, we also achieve the same rate of convergence
provided that θ �= 1/2.

If θ = 1/2, that is σ is Lipchitz continuous, then it follows from Theorem 3.4
and Theorem 3.5 that

E
[

sup
0≤t≤T

∣∣X(t)− Y h(t)
∣∣p
]1/p

≤ Chmin{1/p,γ/2}.

In particular, the rate of convergence of EM algorithm in Lp sense is γ/2 for
0 < p ≤ 2. This actually generalizes the standard L1 and L2 convergence rate
of 1/2 for Euler-Maruyama method for SDE with Markovian switching under
Lipschitz condition (i.e., γ = 1). Under certain non-Lipschitz conditions, only L1

and L2-convergence (without convergence rate) are discussed in [19]. Note that
different from numerical methods for common SDEs, the Lp convergence rates for
methods of regime switching SDEs would reduce for p > 2 because of the effect of
estimations relating the switching process. All the existing results on numerical
methods for SDE with Markovian switching therefore mainly focus on L1 and L2

convergences (see [18,19,22,23,24,30,31]). To the best of our knowledge, there are
no results with better rates of convergence in Lp (0 < p ≤ 2) sense for numerical
method for regime switching diffusions when the diffusion coefficients are Lipschitz
continuous and the drift coefficients are Hölder continuous.
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4. Simulation Results

In this section, we consider several examples to demonstrate the theoretical
findings.

Example 4.1. In the first example, we consider the following equation

dX(t) = b(X(t), β(t))dt+ σ(X(t), β(t))dW (t), 0 ≤ t ≤ 1,

X(0) = 5,
(4.1)

where W (·) is a Brownian motion, β(·) is a two-state Markov chain with the state
space M = {1, 2} and the generator Q given by

Q =

(
−1 1
2 −2

)
. (4.2)

Furthermore, we suppose that the drift b(·, ·) and the diffusion σ(·, ·) are given as
follows

b(x, 1) = 2 + x− 2
√
x, b(x, 2) = 1 + 2x−

√
x

σ(x, 1) = 0.1x, σ(x, 2) = 0.3x.

That is equation (4.1) becomes

dX(t) =
(
2 +X(t)− 2

√
X(t)

)
dt+ 0.1X(t)dW (t)

provided that the Markov chain β(t) resides at the state 1; otherwise, if it resides
at the state 2, equation (4.1) becomes

dX(t) =
(
1 + 2X(t)−

√
X(t)

)
dt+ 0.3X(t)dW (t).

It is easy to verify that Assumption (A) holds for equation (4.1) with

θ = 0.5, u(x, 1) = 2 + x, v(x, 1) = −2
√
x, σ(x, 1) = 0.1x,

γ = 0.5, u(x, 2) = 1 + 2x, v(x, 2) = −
√
x, σ(x, 2) = 0.3x.

We use the Euler scheme with h = δ = 2−15 to be a good approximation of
the exact solution and compare this with the Euler approximations using h =
2−4, h = 2−5, h = 2−6, and h = 2−7. The resulting log-log error plots are shown

Figure 1. log-log plot for Theorem 4.1

with a dashed reference line of slope 0.25 and 0.5 in Fig. 1. The empirical rates of
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convergence of the Euler schemes, which are the slope of the first regression line
and 1/2 the slope of the second regression line, can be estimated by 0.328 and
0.642

2 = 0.321 respectively. In this example, the empirical convergence rates are
close to the verified rates.

Example 4.2. This example concerns a CEV model with Markov switching.

dS(t) = µ(β(t))S(t)dt+ σ(β(t))[S(t)]4/5dW (t), 0 ≤ t ≤ 1,

S(0) = 0.1,

where W (·) is a Brownian motion modeling the random market risk factor; µ(·)
and σ(·) are the parameters of the model; β(·) is a two-state Markov chain with
the state space M = {1, 2} and the generator Q given by

Q =

(
−4 4
6 −6

)
.

Assume further that

µ(1) = 5, µ(2) = 3, σ(1) = 0.3, σ(2) = 0.4.

It is easy to verify that Assumption (A) holds for this equation with θ = 0.3, g ≡ 0.
We take the Euler scheme with h = 2−15 to be a good approximation of the exact
solution and compare this with the Euler approximations using h = 2−3, h = 2−4,
and h = 2−5. The resulting log-log error plots are shown with a dashed reference

Figure 2. log-log plot for Theorem 4.2

line of slope 0.18 in Fig. 2. The empirical rates of convergence of the Euler schemes,
which is the slope of the regression line, can be estimated by 0.188. In this example,
the empirical convergence rate is close to 0.18.

Example 4.3. In Theorem 1.2, we introduced the regime switching Cox-Ingersoll-
Ross (CIR) model for the instantaneous interest rate that follows the Markov-
switching stochastic differential equation:

dr(t) = a(β(t)) [b(β(t))− r(t)] dt+ σ(β(t))
√

r(t)dW (t) 0 ≤ t ≤ 1,

r(0) = 0.05,
(4.3)
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where W (·) is a Brownian motion modeling the random market risk factor; a(·),
b(·), and σ(·) are the parameters of the model; β(·) is a two-state Markov chain
with the state space M = {1, 2} and the generator Q given by

Q =

(
−3 3
1 −1

)
.

Assume further that

a(1) = 0.8, a(2) = 1.0,

b(1) = 0.05, b(2) = 0.03,

σ(1) = 0.05, σ(2) = 0.10.

It is easy to verify that Assumption (A) holds for this equation with θ = 0, g ≡ 0.
We take the Euler scheme with h = δ = 2−15 to be a good approximation of the
exact solution and compare this with the Euler approximations using h = 2−3, h =
2−4, and h = 2−5. The resulting log-log error plots are shown with a dashed

Figure 3. log-log plot for Theorem 4.3

reference line of slope 0.5 and 1.0 in Fig. 3. The empirical rates of convergence of
the Euler schemes (as powers of 1

|ln(h)| ), which are the slope of the first regression

line and 1/2 the slope of the second regression line, can be estimated by 0.805 and
1.726

2 = 0.863 respectively.

5. Further discussion

In this paper, we study Euler-Maruyama approximation for one-dimensional
stochastic differential equations with Hölder coefficients using the method of Ya-
mada and Watanabe approximating the function φ(x) = |x| for x ∈ R, which
is discussed at the beginning of Section 2.3. Extending the results for multi-
dimensional stochastic differential equations is a natural and interesting problem.
Dealing with multi-dimensional stochastic differential equations would require a
totally different approach. This open problem will be one of our future work.
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Appendix A. Appendix

A.1. Proof of Theorem 2.2. We first verify the existence of equation (2.1)
under Assumption (A). In fact, let τ0 = 0 and 0 < τ1 < τ2 < . . . be all the
jump times of the switching process such that β(t) is a constant in each interval
[τi, τi+1) for each i ≥ 0. Since equation (2.1) always has a unique solution within
[τi, τi+1) under Assumption (A), the existence of solution of equation (2.1) is then
confirmed.

Next, we will prove the uniqueness of equation (2.1) under Assumption (A).
Suppose that Y1(t) and Y2(t) are two solutions of equation (2.1). Put Y (t) =
Y1(t)− Y2(t). Fix T > 0. Then

dY (t) =
[
b(t, Y1(t), β(t))− b(t, Y2(t), β(t))

]
dt

+
[
σ(t, Y1(t), β(t))− σ(t, Y2(t), β(t))

]
dW (t), t ∈ [0, T ],

Y (0) = 0.

Applying Itô’s formula for φ(Ŷ h(t)) and using property (a) of φ in Theorem 2.5,
we obtain∣∣Y (t)

∣∣ ≤ ε+ φ(Y (t))

= ε+

∫ t

0

φ′(Y (s))
[
u(s, Y1(s), β(s)

)
− f

(
s, Y2(s), β(s)

)]
ds

+

∫ t

0

φ′(Y (s))
[
v(s, Y1(s), β(s)

)
− g

(
s, Y2(s), β(s)

)]
ds

+
1

2

∫ t

0

φ′′(Y (s))
[
σ(s, Y1(s), β(s)

)
− σ

(
s, Y2(s), β(s)

)]2
ds

+

∫ t

0

φ′(Y (s)) [σ(s, Y1(s), β(s))− σ(s, Y2(s), β(s))] dW (s).

(A.1)

We are going to estimate the integrals on the right hand side of inequality (A.1).
First of all, using properties (b) and (c), and Assumption A1 yields

∫ t

0

φ′(Y (s))
[
u(s, Y1(s), β(s)

)
− f

(
s, Y2(s), β(s)

)]
ds

≤
∫ t

0

∣∣φ′(Y (s))
∣∣ ∣∣u(s, Y1(s), β(s)

)
− f

(
s, Y2(s), β(s)

)∣∣ ds

≤ K

∫ t

0

∣∣Y (s)
∣∣ ds.

(A.2)

Since g is monotone decreasing, we can use properties (b) and (c) to obtain

∫ t

0

φ′ (Y (s)
) [

v(s, Y1(s), β(s)
)
− g

(
s, Y2(s), β(s)

)]
ds

=

∫ t

0

φ
(
|Y (s)|

)

|Y (s)|
Y (s)

[
v(s, Y1(s), β(s)

)
− g

(
s, Y2(s), β(s)

)]
ds ≤ 0.

(A.3)
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Thanks to property (d) and Assumption A3, the third integral in inequality (A.1)
can be estimated as follows

∫ t

0

φ′′(Y (s))
[
σ(s, Y1(s), β(s)

)
− σ

(
s, Y2(s), β(s)

)]2
ds

≤
∫ t

0

∣∣Y (s)
∣∣2θ+1 2

|Y (s)| ln δ
11[ε/δ,ε](|Y (s)|)ds

≤
∫ t

0

ε2θ
2

ln δ
ds ≤ 2Tε2θ

ln δ
.

(A.4)

As a result, inequalities (A.1) to (A.4) imply

E
∣∣Y (t)

∣∣ ≤ ε+K

∫ t

0

E
∣∣Y (s)

∣∣ ds+ 2Tε2θ

ln δ
,

from which, by using Gronwall’s inequality, we can derive that

E
∣∣Y (t)

∣∣ ≤
(
ε+

2Tε2θ

ln δ

)
eKt.

If we choose δ = 2 and let ε → 0, then this inequality leads to E
∣∣Y (t)

∣∣ = 0; it

means that Y (t) = 0 almost surely for all t ∈ [0, T ]. Hence, equation (2.1) has a
unique solution. �

A.2. Proof of Theorem 2.3. For each k = 1, 2, . . . , put

τk = inf
{
t ≥ 0 :

∣∣Y h(t)
∣∣ ≥ k

}
.

We first note that

|Y h(t ∧ τk)|p ≤ C|X0|p + C

∣∣∣∣
∫ t∧τk

0

b(s, Y h(ζh(s)), β(ζh(s)))ds

∣∣∣∣
p

+ C

∣∣∣∣
∫ t∧τk

0

σ(s, Y h(ζh(s)), β(ζh(s)))dW (s)

∣∣∣∣
p

.

(A.5)

Using inequality (2.2) and the elementary inequality (a1 + b1)
p ≤ C(ap1 + bp1) for

positive numbers a1 and b1 (constant C only depends on p), we have the following
estimate for the first integral on the right hand side of inequality (A.5)

∣∣∣∣
∫ t∧τk

0

b(s, Y h(ζh(s)), β(ζh(s)))ds

∣∣∣∣
p

≤
[∫ t∧τk

0

(
1 +

∣∣Y h(ζh(s))
∣∣) ds

]p

≤ C + C

(∫ t∧τk

0

sup
r∈[0,s]

∣∣Y h(r)
∣∣ ds

)p

≤ C + C

(∫ t

0

sup
r∈[0,s]

∣∣Y h(r ∧ τk)
∣∣ ds

)p

.

(A.6)
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We can also estimate the second integral on the right hand side of inequality (A.5)
using inequality (2.3) and Burkholder-Davis-Gundy inequality as follows

E

[
sup

r∈[0,t]

∣∣∣∣
∫ r∧τk

0

σ(s, Y h(ζh(s)), β(ζh(s)))dW (s)

∣∣∣∣
p
]

≤ C E
(∫ t∧τk

0

∣∣σ(s, Y h(ζh(s)), β(ζh(s)))
∣∣2 ds

)p/2

≤ C E
(∫ t∧τk

0

(
1 +

∣∣Y h(s)
∣∣2) ds

)p/2

≤ C + C E
(∫ t

0

∣∣Y h(s ∧ τk)
∣∣2 ds

)p/2

.

(A.7)

As a result, a combination of inequalities (A.5) to (A.7) gives

E sup
r∈[0,t]

∣∣Y h(r ∧ τk)
∣∣p ≤ C + C E

(∫ t

0

sup
r∈[0,s]

∣∣Y h(r ∧ τk)
∣∣ ds

)p

+ C E
(∫ t

0

∣∣Y h(s ∧ τk)
∣∣2 ds

)p/2

,

and thus an application of Theorem 3.1 with ρ = q = 2 yields that

E sup
r∈[0,T ]

|Y h(r ∧ τk)|p ≤ C,

where C is a constant depending only on T, h, λ,K, p and E |X0|p. Therefore,
limk→∞ τk > T a.s. By letting k → ∞ and using Fatou’s lemma we obtain the
desired estimate E supr∈[0,T ] |Y h(r)|p ≤ C. �

A.3. Proof of Theorem 2.4. For any p > 0,

E |Ỹ h(t)|p ≤ 2p−1 E

∣∣∣∣∣
∫ t

ζh(t)

b(s, Y h(ζh(s)), β(ζh(s)))ds

∣∣∣∣∣
p

+ 2p−1 E

∣∣∣∣∣
∫ t

ζh(t)

σ(s, Y h(ζh(s)), β(ζh(s)))dW (s)

∣∣∣∣∣
p

.

(A.8)

First of all, we want to estimate the first integral on the right-hand side of
inequality (A.8) by considering two cases: p ≥ 1 or 0 < p < 1. If p ≥ 1 then
Hölder’s inequality, inequality (2.2) and Theorem 2.3 imply

E

∣∣∣∣∣
∫ t

ζh(t)

b(s, Y h(ζh(s)), β(ζh(s)))ds

∣∣∣∣∣
p

≤ hp−1 E
∫ t

ζh(t)

∣∣b(s, Y h(ζh(s)), β(ζh(s)))
∣∣p ds

≤ Chp−1 E
∫ t

ζh(t)

[
1 +

∣∣Y h(ζh(s))
∣∣p] ds ≤ Chp.

(A.9)
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If 0 < p < 1, Jensen’s inequality, inequality (2.2) and Theorem 2.3 also imply

E

∣∣∣∣∣
∫ t

ζh(t)

b(s, Y h(ζh(s)), β(ζh(s)))ds

∣∣∣∣∣
p

≤

[
E
∫ t

ζh(t)

∣∣b(s, Y h(ζh(s)), β(ζh(s)))
∣∣ ds

]p

≤

[
E
∫ t

ζh(t)

(
1 +

∣∣Y h(ζh(s))
∣∣) ds

]p

≤ Chp.

(A.10)

Thus, it follows from inequalities (A.9) and (A.10) that for all p > 0,

E

∣∣∣∣∣
∫ t

ζh(t)

b(s, Y h(ζh(s)), β(ζh(s)))ds

∣∣∣∣∣
p

≤ Chp. (A.11)

Now we will estimate the second integral on the right-hand side of inequal-
ity (A.8) by considering three cases: p ≥ 2, 1 ≤ p < 2, or 0 < p < 1. If p ≥ 2
then the Burkholder-Davis-Gundy inequality, inequality (2.3), Hölder’s inequality,
Theorem 2.3 in that order derive that

E

∣∣∣∣∣
∫ t

ζh(t)

σ(s, Y h(ζh(s)), β(ζh(s)))dW (s)

∣∣∣∣∣
p

≤ C E

[∫ t

ζh(t)

∣∣σ(s, Y h(ζh(s)), β(ζh(s)))
∣∣2 ds

]p/2

≤ C E

[∫ t

ζh(t)

(
1 +

∣∣Y h(ζh(s))
∣∣2) ds

]p/2

≤ Chp/2−1 E
∫ t

ζh(t)

(
1 +

∣∣Y h(ζh(s))
∣∣p) ds ≤ Chp/2.

If 1 ≤ p < 2 then Burkholder-Davis-Gundy inequality, Jensen’s inequality, in-
equality (2.3) and Theorem 2.3 in that order yield

E

∣∣∣∣∣
∫ t

ζh(t)

σ(s, Y h(ζh(s)), β(ζh(s)))dW (s)

∣∣∣∣∣
p

≤ C E

[∫ t

ζh(t)

∣∣σ(s, Y h(ζh(s)), β(ζh(s)))
∣∣2 ds

]p/2

≤ C

[
E
∫ t

ζh(t)

∣∣σ(s, Y h(ζh(s)), β(ζh(s)))
∣∣2 ds

]p/2

≤ C

[
E
∫ t

ζh(t)

(
1 +

∣∣Y h(ζh(s))
∣∣1+2θ

)
ds

]p/2

≤ Chp/2.
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If 0 < p < 1, then Jensen’s inequality, Burkholder-Davis-Gundy inequality, and
inequality (2.3) give

E

∣∣∣∣∣
∫ t

ζh(t)

σ(s, Y h(ζh(s)), β(ζh(s)))dW (s)

∣∣∣∣∣
p

≤

[
E

∣∣∣∣∣
∫ t

ζh(t)

σ(s, Y h(ζh(s)), β(ζh(s)))dW (s)

∣∣∣∣∣

]p

≤ C


E

∣∣∣∣∣
∫ t

ζh(t)

∣∣σ(s, Y h(ζh(s)), β(ζh(s)))
∣∣2 ds

∣∣∣∣∣
1/2



p

≤ C


E

∣∣∣∣∣
∫ t

ζh(t)

(
1 +

∣∣Y h(ζh(s))
∣∣1+2θ

)
ds

∣∣∣∣∣
1/2



p

,

while Jensen’s inequality and Theorem 2.3 imply

E

∣∣∣∣∣
∫ t

ζh(t)

(
1 +

∣∣Y h(ζh(s))
∣∣1+2θ

)
ds

∣∣∣∣∣
1/2

≤

[
E
∫ t

ζh(t)

(
1 +

∣∣Y h(ζh(s))
∣∣1+2θ

)
ds

]1/2

≤ h1/2.

Thus,

E

∣∣∣∣∣
∫ t

ζh(t)

σ(s, Y h(ζh(s)), β(ζh(s)))dW (s)

∣∣∣∣∣
p

≤ Chp/2.

for all 0 < p < 1. Hence for all p > 0,

E

∣∣∣∣∣
∫ t

ζh(t)

σ(s, Y h(ζh(s)), β(ζh(s)))dW (s)

∣∣∣∣∣
p

≤ Chp/2. (A.12)

Combining inequalities (A.8), (A.11) and (A.12), we obtain inequality (2.8). Next,
we will verify inequality (2.9). In fact, if 0 < p < 1 then we can use Jensen’s
inequality and inequality (2.8) to deduce

E
(∫ t

0

|Ỹ h(t)|�ds
)p

≤
(∫ t

0

E |Ỹ h(t)|�ds
)p

≤ Ch�p/2.

Besides, if p ≥ 1 then Hölder’s inequality and inequality (2.8) yield

E
(∫ t

0

|Ỹ h(t)|�ds
)p

≤ C E
∫ t

0

|Ỹ h(t)|�pds ≤ Ch�p/2.

Therefore, inequality (2.9) is valid for all � > 0 and p > 0. �
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A.4. Proof of Theorem 2.6. By Assumptions A1, A2 and A4, it follows that

E
∫ t

0

[
Uh(s)

]�
ds

≤
Nt∑
k=0

∫ thk+1∧t

thk

E
∣∣b(s, Y h(thk), β(s))− b(s, Y h(thk), β(t

h
k))

∣∣� ds

≤
Nt∑
k=0

∫ thk+1∧t

thk

∑
1≤i0 �=j0≤m0

E
[ ∣∣b(s, Y h(thk), j0)− b(s, Y h(thk), i0)

∣∣�

× P
(
β(s) = j0, β(t

h
k) = i0

∣∣∣Fthk

)]
ds

≤ Ch

Nt∑
k=0

∫ thk+1∧t

thk

(
1 + E

∣∣Y h(thk)
∣∣� + E

∣∣Y h(thk)
∣∣γ�) ds ≤ Ch.

(A.13)

The last inequality is valid due to Theorem 2.3 with p = � and p = γ� respectively.

A similar computation as for the estimation of E
∫ t

0

[
Uh(s)

]�
ds above, on ac-

count of Assumptions A3 and A4, also gives

E
∫ t

0

[
V h(s)

]�
ds

≤
Nt∑
k=0

∫ thk+1∧t

thk

E
∣∣σ(s, Y h(thk), β(s))− σ(s, Y h(thk), β(t

h
k))

∣∣2� ds

≤
Nt∑
k=0

∫ thk+1∧t

thk

∑
1≤i0 �=j0≤m0

E
∣∣σ(s, Y h(thk), j0)− σ(s, Y h(thk), i0)

∣∣2�

× P
(
β(s) = j0, β(t

h
k) = i0

∣∣∣Fthk

)]
ds

≤ Ch

Nt∑
k=0

∫ thk+1∧t

thk

(
1 + E

∣∣Y h(thk)
∣∣(1+2θ)�

)
ds ≤ Ch.

(A.14)

This completes the proof. �

A.5. Proof of Theorem 2.7. Notice that

Ŷ h(t) =

∫ t

0

[
b(t,X(t), β(t))− b(s, Y h(ζh(s)), β(ζh(s)))

]
ds

+

∫ t

0

[
σ(t,X(t), β(t))− σ(s, Y h(ζh(t)), β(ζh(t)))

]
dW (s).

Using property (a) of φ in Theorem 2.5 and applying Itô’s formula for φ(Ŷ h(t)),
we obtain

∣∣∣Ŷ h(t)
∣∣∣ ≤ ε+ φ(Ŷ h(t)) = ε+

∫ t

0

Uh
1 (s)ds+

1

2

∫ t

0

V h
1 (s)ds+ Lh(t), (A.15)
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where Lh(t) is defined as in equation (2.13) and

Uh
1 (s) = φ′(Ŷ h(s))

[
b(s,X(s), β(s)

)
− b

(
s, Y h(ζh(s)), β(ζh(s))

)]
,

V h
1 (s) = φ′′(Ŷ h(s))

[
σ(s,X(s), β(s)

)
− σ

(
s, Y h(ζh(s)), β(ζh(s))

)]2
.

For our purposes here, we need to estimate Uh
1 (s) and V h

1 (s). Let Uh(s) be defined
as in equation (2.11). Then,

Uh
1 (s) = φ′(Ŷ h(s))

[
u(s,X(s), β(s))− u(s, Y h(s), β(s))

]

+
φ′(|Ŷ h(s)|)
|Ŷ h(s)|

Ŷ h(s)
[
v(s,X(s), β(s))− v(s, Y h(s), β(s))

]

+ φ′(Ŷ h(s))
[
u(s, Y h(s), β(s))− u(s, Y h(ζh(s)), β(s))

]

+ φ′(Ŷ h(s))
[
v(s, Y h(s), β(s))− v(s, Y h(ζh(s)), β(s))

]

+ φ′(Ŷ h(s))
[
b(s, Y h(ζh(s)), β(s))− b

(
s, Y h(ζh(s)), β(ζh(s))

)]
.

(A.16)

On the right-hand side of equation (A.16), the first and the third term can be
estimated by using Theorem 2.5 and Assumption A1, the second term is negative
due to the decreasing monotonicity of function g, the fourth term can be estimated
by using Theorem 2.5 and Assumption A2. Therefore,

Uh
1 (s) ≤ K|Ŷ h(s)|+K

∣∣∣Ỹ h(s)
∣∣∣+K

∣∣∣Ỹ h(s)
∣∣∣
γ

+ Uh(s). (A.17)

It remains to estimate V h
1 (s). Let V h(s) be defined as in equation (2.12). Then,

V h
1 (s) ≤ 2φ′′(Ŷ h(s))

[∣∣σ(s,X(s), β(s))− σ(s, Y h(ζh(s)), β(s))
∣∣2 + V h(s)

]
.

On the other hand, Assumption A3 implies

∣∣σ(s,X(s), β(s))− σ(s, Y h(ζh(s)), β(s))
∣∣2 ≤ C

∣∣X(s)− Y h(ζh(s))
∣∣1+2θ

≤ C

[∣∣∣Ŷ h(s)
∣∣∣
1+2θ

+
∣∣∣Ỹ h(s)

∣∣∣
1+2θ

]
.

As a result, Property (d) of φ in Theorem 2.5 gives

V h
1 (s) ≤ C

|Ŷ h(s)| ln δ
11[ε/δ,ε](|Ŷ h(s)|)

[∣∣∣Ŷ h(s)
∣∣∣
1+2θ

+
∣∣∣Ỹ h(s)

∣∣∣
1+2θ

+ V h(s)

]

≤ Cε2θ

ln δ
+

Cδ

ε ln δ

[∣∣∣Ỹ h(s)
∣∣∣
1+2θ

+ V h(s)

]
.

(A.18)
The combination of inequalities (A.15) and (A.17) and equation (A.18) yields
inequality (2.16). �
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A.6. Proof of Theorem 2.8. An application of Itô’s formula for
∣∣∣Ŷ h(t)

∣∣∣
p

gives

∣∣∣Ŷ h(t)
∣∣∣
p

=

∫ t

0

p
∣∣∣Ŷ h(s)

∣∣∣
p−2

Ŷ h(s)
[
b(s,X(s), β(s))− b(s, Y h(ζh(s)), β(ζh(s)))

]
ds

+
1

2

∫ t

0

p(p− 1)
∣∣∣Ŷ h(s)

∣∣∣
p−2 [

σ(s,X(s), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))
]2

ds

+

∫ t

0

p
∣∣∣Ŷ h(s)

∣∣∣
p−2

Ŷ h(s)
[
σ(s,X(s), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))

]
dW (s).

(A.19)

Recall that Zh(t) = sups∈[0,t]

∣∣∣Ŷ h(s)
∣∣∣. We will estimate all integrals on the right-

hand side of inequality (A.19) in three corresponding steps.
Step 1: For the first integral, we observe that

E
∫ t

0

p
∣∣∣Ŷ h(s)

∣∣∣
p−2

Ŷ h(s)
[
b(s,X(s), β(s))− b(s, Y h(ζh(s)), β(ζh(s)))

]
ds

≤ E
∫ t

0

p
∣∣∣Ŷ h(s)

∣∣∣
p−2

Ŷ h(s)
[
u(s,X(s), β(s))− u(s, Y h(s), β(s))

]
ds

+ E
∫ t

0

p
∣∣∣Ŷ h(s)

∣∣∣
p−2

Ŷ h(s)
[
v(s,X(s), β(s))− v(s, Y h(s), β(s))

]
ds

+ E
∫ t

0

p
∣∣∣Ŷ h(s)

∣∣∣
p−2

Ŷ h(s)
[
b(s, Y h(s), β(s))− b(s, Y h(ζh(s)), β(s))

]
ds

+ E
∫ t

0

p
∣∣∣Ŷ h(s)

∣∣∣
p−2

Ŷ h(s)
[
b(s, Y h(ζh(s)), β(s))− b(s, Y h(ζh(s)), β(ζh(s)))

]
ds.

(A.20)
The first term on the right-hand side of inequality (A.20) can be estimated by
using Assumption A1, while the second term is negative due to the decreasing
monotonicity of function g and the third term can be estimated by using Assump-
tions A1 and A2. That is, inequality (A.20) becomes

E
∫ t

0

p
∣∣∣Ŷ h(s)

∣∣∣
p−2

Ŷ h(s)
[
b(s,X(s), β(s))− b(s, Y h(ζh(s)), β(ζh(s)))

]
ds

≤ C E
∫ t

0

p
∣∣∣Ŷ h(s)

∣∣∣
p

ds+ C E
∫ t

0

p
∣∣∣Ŷ h(s)

∣∣∣
p−1 [∣∣∣Ỹ h(s)

∣∣∣+
∣∣∣Ỹ h(s)

∣∣∣
γ

+ Uh(s)
]
ds

≤ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p

ds+ C E
∫ t

0

[∣∣∣Ỹ h(s)
∣∣∣
p

+
∣∣∣Ỹ h(s)

∣∣∣
pγ

+
[
Uh(s)

]p]
ds.

On the other hand, applications of Theorem 2.4 and Theorem 2.6 give

E
∫ t

0

[∣∣∣Ỹ h(s)
∣∣∣
p

+
∣∣∣Ỹ h(s)

∣∣∣
pγ

+
[
Uh(s)

]p]
ds ≤ C

(
hp/2 + hpγ/2 + h

)
.
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Therefore,

E
∫ t

0

p
∣∣∣Ŷ h(s)

∣∣∣
p−2

Ŷ h(s)
[
b(s,X(s), β(s))− b(s, Y h(ζh(s)), β(ζh(s)))

]
ds

≤ C E
∫ t

0

∣∣Zh(s)
∣∣p ds+ C

(
hp/2 + hpγ/2 + h

)
.

(A.21)

Step 2: The second integral on the right hand side of inequality (A.19) can also be
estimated by using Assumptions A1 and A2 as follows

E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−2 [

σ(s,X(s), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))
]2

ds

≤ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−2 [

σ(s,X(s), β(s))− σ(s, Y h(s), β(s))
]2

ds

+ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−2 [

σ(s, Y h(s), β(s))− σ(s, Y h(ζh(s)), β(s))
]2

ds

+ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−2 [

σ(s, Y h(ζh(s)), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))
]2

ds

≤ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−1+2θ

ds+ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−2

[∣∣∣Ỹ h(s)
∣∣∣
1+2θ

+ V h(s)

]
ds

≤ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−1+2θ

ds+ C E
∫ t

0

[∣∣∣Ỹ h(s)
∣∣∣
p−1+2θ

+
[
V h(s)

] p−1+2θ
1+2θ

]
ds.

Thanks to Theorem 2.4 and Theorem 2.6, we can verify that

E
∫ t

0

[∣∣∣Ỹ h(s)
∣∣∣
p−1+2θ

+
[
V h(s)

] p−1+2θ
1+2θ

]
ds ≤ C

(
h(p−1+2θ)/2 + h

)
.

Hence,

E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−2 [

σ(s,X(s), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))
]2

ds

≤ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−1+2θ

ds+ C
(
h(p−1+2θ)/2 + h

)
.

(A.22)

Step 3:
Finally, we will estimate the third integral on the right hand side of inequal-
ity (A.19) using Burkholder-Davis-Gundy inequality as follows

E sup
r∈[0,t]

∣∣∣∣
∫ r

0

∣∣∣Ŷ h(s)
∣∣∣
p−2

Ŷ h(s)[σ(s,X(s), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))]dW (s)

∣∣∣∣

≤ C E
[(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
2(p−1) ∣∣σ(s,X(s), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))

∣∣2 ds
)1/2]
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which is bounded by

C E
[(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
2(p−1) ∣∣σ(s,X(s), β(s))− σ(s, Y h(s), β(s))

∣∣2 ds
)1/2]

+ C E
[(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
2(p−1) ∣∣σ(s, Y h(s), β(s))− σ(s, Y h(ζh(s)), β(s))

∣∣2 ds
)1/2]

+ C E
[(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
2(p−1)

|σ(s, Y h(ζh(s)), β(s))

− σ(s, Y h(ζh(s)), β(ζh(s)))|2ds
)1/2]

.

Similar arguments as in Step 1 and 2 yield

E

[(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
2(p−1) ∣∣σ(s,X(s), β(s))− σ(s, Y h(s), β(s))

∣∣2 ds
)1/2

]

≤ C E

[(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
2p−1+2θ

ds

)1/2
]

≤ C E

[∣∣Zh(t)
∣∣p/2

(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−1+2θ

ds

)1/2
]

≤ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−1+2θ

ds+
1

6
E
∣∣Zh(t)

∣∣p .
Likewise,

E

[(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
2(p−1) ∣∣σ(s, Y h(s), β(s))− σ(s, Y h(ζh(s)), β(s))

∣∣2 ds
)1/2

]

≤ C E

[(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
2(p−1) ∣∣∣Ỹ h(s)

∣∣∣
1+2θ

ds

)1/2
]

≤ C E

[∣∣Zh(t)
∣∣p−1

(∫ t

0

∣∣∣Ỹ h(s)
∣∣∣
1+2θ

ds

)1/2
]

≤ 1

6
E
∣∣Zh(t)

∣∣p + C E

[(∫ t

0

∣∣∣Ỹ h(s)
∣∣∣
1+2θ

ds

)p/2
]
,

and

E

[(∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
2(p−1) ∣∣σ(s, Y h(ζh(s)), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))

∣∣2 ds
)1/2

]

≤ C E

[∣∣Zh(t)
∣∣p−1

(∫ t

0

V h(s)ds

)1/2
]

≤ 1

6
E
∣∣Zh(t)

∣∣p + C E

[(∫ t

0

V h(s)ds

)p/2
]
.
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Thus,

E sup
r∈[0,t]

∣∣∣∣∣
∫ r

0

∣∣∣Ŷ h(s)
∣∣∣
p−2

Ŷ h(s)[σ(s,X(s), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))]dW (s)

∣∣∣∣∣

≤ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−1+2θ

ds+
1

2
E
∣∣Zh(t)

∣∣p + C E

[(∫ t

0

∣∣∣Ỹ h(s)
∣∣∣
1+2θ

ds

)p/2
]

+ C E

[(∫ t

0

V h(s)ds

)p/2
]
,

whence we can use Theorem 2.4 and Theorem 2.6 to derive

E sup
r∈[0,t]

∣∣∣∣∣
∫ r

0

∣∣∣Ŷ h(s)
∣∣∣
p−2

Ŷ h(s)[σ(s,X(s), β(s))− σ(s, Y h(ζh(s)), β(ζh(s)))]dW (s)

∣∣∣∣∣

≤ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−1+2θ

ds+
1

2
E
∣∣Zh(t)

∣∣p + C
[
h(1+2θ)p/2 + h

]
.

(A.23)
In consequence, a combination of inequalities (A.19) and (A.21) to (A.23) leads

to

E
∣∣Zh(t)

∣∣p ≤ C E
∫ t

0

∣∣Zh(t)
∣∣p ds+ C E

∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−1+2θ

ds

+ C
[
hpγ/2 + h+ h(p−1+2θ)/2

]
.

Hence, using Gronwall’s inequality, we get

E
∣∣Zh(t)

∣∣p ≤ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p−1+2θ

ds+ C
[
hpγ/2 + h+ h(p−1+2θ)/2

]
.

In particular, if θ = 1/2 then

E
∣∣Zh(t)

∣∣p ≤ C E
∫ t

0

∣∣∣Ŷ h(s)
∣∣∣
p

ds+ C
[
hpγ/2 + h+ hp/2

]

≤ C E
∫ t

0

∣∣Zh(s)
∣∣p ds+ C

[
hpγ/2 + h

]
.

Again, an application of Gronwall’s inequality also yields

E
∣∣Zh(t)

∣∣p ≤ C
[
hpγ/2 + h

]
.

�

A.7. Proof of Theorem 3.1. Let p > 0. We claim that: For any C1 > 0, there
exists a constant C2 > 0 such that(∫ t

0

Ŷ (s)ds

)p

≤ C1[Z(t)]p + C2t
max{p−1,0}

∫ t

0

[Ŷ (s)]pds, (A.24)

for all t ∈ [0, T ], where C2 depends only on p, C1, and T . Indeed, if p ≥ 1 then
Hölder’s inequality implies that

(∫ t

0

Ŷ (s)ds

)p

≤ tp−1

∫ t

0

[Ŷ (s)]pds,
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and if 0 < p < 1 then Young’s inequality implies that
(∫ t

0

Ŷ (s)ds

)p

≤ [Z(t)]p(1−p)

(∫ t

0

[Ŷ (s)]pds

)p

≤ C1[Z(t)]p + C2

∫ t

0

[Ŷ (s)]pds.

Thus inequality (A.24) holds for all p > 0 and t ∈ [0, T ]. Using inequality (A.24)
with V in place of Y and C1 = 1/2, we obtain

(∫ t

0

Z(s)ds

)p

≤ 1

2
[Z(t)]p + C2T

max{p−1,0}
∫ t

0

[Z(s)]pds

for all t ∈ [0, T ]. As a result, inequality (3.1) can be derived from inequality (3.5).
Therefore, it it only necessary to prove this theorem under assumption (3.1) instead
of (3.5). Now we assume that inequality (3.1) holds. We consider the following
cases.

i. If ρ = q then using inequality (A.24) with Y q in place of Y , p/q in place of p,
and C1 = 1

2K2
gives

(∫ t

0

[Ŷ (s)]qds

)p/q

≤ 1

2K2
[Z(t)]p + C2t

max{(p−q)/q,0}
∫ t

0

[Ŷ (s)]pds.

Thus, by inequality (3.1),

E[Z(t)]p ≤
(
C + Ctmax{(p−q)/q,0}

)
E
∫ t

0

[Z(s)]pds+ δ,

and hence, for any r ∈ [0, t]

E[Z(r)]p ≤
(
C + Ctmax{(p−q)/q,0}

)
E
∫ r

0

[Z(s)]pds+ δ,

which, in view of Gronwall’s inequality, leads to

E[Z(t)]p ≤ δ exp
(
Ct+ Ctmax{p/q,1}

)
.

By choosing t = T in this estimate, we obtain inequality (3.2).
ii. If p ≥ q with q ≥ 1 and ρ ∈ [1, q) then Hölder’s inequality and Young’s

inequality imply
(∫ t

0

[Ŷ (s)]ρds

)p/q

≤ t
p−q
q

∫ t

0

[Ŷ (s)]ρp/qds (A.25)

≤ t
p−q
q

∫ t

0

[Ŷ (s)]
p

p−1 (1−
ρ
q )[Z(s)]

p
p−1 (

pρ
q −1)ds

≤ Ct
(p−q)(p−1)

p(q−ρ)

∫ t

0

Ŷ (s)ds+ C

∫ t

0

[Z(s)]pds. (A.26)

Here inequality (A.25) is valid due to Hölder’s inequality and inequality (A.26) is
valid due to Young’s inequality. In view of inequality (3.1),

E[Z(t)]p ≤ C E
∫ t

0

[Z(s)]pds+ Ct
(p−q)(p−1)

p(q−ρ)

∫ t

0

Ŷ (s)ds+ δ,
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which, in view of Gronwall’s inequality, leads to

E[Z(t)]p ≤ eCt

[
Ct

(p−q)(p−1)
p(q−ρ)

∫ t

0

E[Ŷ (s)]ds+ δ

]
.

Thus inequality (3.3) holds if p ≥ q. Then choosing t = T in inequality (3.3)
verifies inequality (3.4).
iii. If q + 1− ρ < p < q with q ≥ 1 and ρ ∈ [1, q) then Young’s inequality implies

(∫ t

0

[Ŷ (s)]ρds

)p/q

≤ [Z(t)]
(q−p)p

q

(∫ t

0

[Ŷ (s)]ρ−(q−p)ds

)p/q

≤ 1

2K2
[Z(t)]p + C

∫ t

0

[Ŷ (s)]p−(q−ρ)ds,

and ∫ t

0

[Ŷ (s)]p−(q−ρ)ds ≤
∫ t

0

[Ŷ (s)]
q−ρ
p−1 [Z(s)]p(1−

q−ρ
p−1 )

≤ C

∫ t

0

Ŷ (s)ds+ C

∫ t

0

[Z(s)]pds.

Again, by inequality (3.1),

E[Z(t)]p ≤ C

∫ t

0

E[Z(s)]pds+ C

∫ t

0

E[Ŷ (s)]ds+ δ,

which, in view of Gronwall’s inequality, leads to

E[Z(t)]p ≤ eCt

[
C

∫ t

0

E[Ŷ (s)]ds+ δ

]
.

Thus inequality (3.3) holds if p ≥ q+1−ρ. Then choosing t = T in inequality (3.3)
verifies inequality (3.4).

The proof is complete. �
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