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Abstract. We investigate a stochastic 2D Cahn-Hilliard-Navier-Stokes sys-
tem with a multiplicative noise of Lévy type. The model consists of the

Navier-Stokes equations for the velocity, coupled with a Cahn-Hilliard sys-
tem for the order (phase) parameter. We prove that the system has a unique
global strong solution and we derive some a priori estimates for the solution.

1. Introduction

It is well accepted that the incompressible Navier-Stokes equation governs the
motions of single-phase fluids such as air or water. On the other hand, we are faced
with the difficult problem of understanding the motion of binary fluid mixtures,
that is fluids composed by either two phases of the same chemical species or phases
of different composition. Diffuse interface models are well-known tools to describe
the dynamics of complex (e.g., binary) fluids, [25, 26]. For instance, this approach
is used in [5] to describe cavitation phenomena in a flowing liquid. The model
consists of the NSE equation coupled with the phase-field system, [14, 25, 26, 27].
In the isothermal compressible case, the existence of a global weak solution is
proved in [24]. In the incompressible isothermal case, neglecting chemical reactions
and other forces, the model reduces to an evolution system which governs the
fluid velocity v and the order parameter ϕ. This system can be written as a NSE
equation coupled with a convective Allen-Cahn equation, [25]. The associated
initial and boundary value problem was studied in [25] in which the authors proved
that the system generated a strongly continuous semigroup on a suitable phase
space which possesses a global attractor. When the two fluids have the same
constant density, the temperature differences are negligible and the diffuse interface
between the two phases has a small but non-zero thickness, a well-known model
is the so-called ”Model H” (cf. [28, 30]). This is a system of equations where an
incompressible Navier-Stokes equation for the (mean) velocity v is coupled with
a convective Cahn-Hilliard equation for the order parameter ϕ, which represents
the relative concentration of one of the fluids.

The purpose of this article is to study a stochastic 2D Cahn-Hilliard-Navier-
Stokes equations (CH-NSE) driven by a non-Gaussian Levy noise. We recall that
introducing a random term in a fluid model such as the Navier-Stokes system is now
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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a well accepted tool to model the influence of internal, external and environmental
noise. Adding a noise term in a fluid model can also be used to describe systems
that are too complex to be described deterministically, e.g. a flow of a chemical
substance in a river subjected by wind and rain, an airflow around an airplane
wing perturbed by the random state of the atmosphere and weather, a laser beam
subjected to turbulent movement of the atmosphere, spread of an epidemic in some
regions and the spatial spread of infectious diseases, [4, 11, 12, 23, 31, 32, 33, 34,
41, 42, 43].

There are few notable works available on the stochastic CH-NSE driven by
Gaussian noise. In [19], the authors considered the stochastic 3D globally modified
Cahn-Hilliard-Navier-Stokes equations with multiplicative Gaussian noise. They
proved the existence and uniqueness of strong solution (in the sense of partial
differential equations and stochastic analysis). Moreover, they studied the asymp-
totic behavior of the unique solution and obtained the existence of a probabilistic
weak solution for the stochastic 3D Cahn-Hilliard-Navier-Stokes equations. In [18],
they also considered the asymptotic stability of the unique strong solution for the
3D globally modified Cahn-Hilliard-Navier-Stokes equations. The second author
of the paper has proved the existence and uniqueness of the probabilistic strong
solution for the stochastic 2D CH-NSE with multiplicative noise, [35].

In recent years, introducing a jump-type noises as Lévy-type or Poisson-type
perturbations has become extremely popular for modeling natural phenomena, be-
cause these noises are very nice choice to reproduce the performance of some nat-
ural phenomena in real world models, such as some large moves and unpredictable
events. There is a large amount of literature on the existence and uniqueness solu-
tions for stochastic partial differential equations driven by jump-type noises. We
refer the reader to [12, 20, 21, 22, 36, 37, 38, 39, 40, 44, 45]. However, the existing
results in the literature do not cover the situation considered in this paper.

The aim of this article is to study a class of stochastic coupled CH-NSE driven
by jump noise of Lévy type. To the best of our knowledge, this is the first work
dealing with the stochastic version of the CH-NSE driven by jump noise. The
model includes an abstract and general form of random external forces depending
eventually on the velocity v of the fluid and the order parameter ϕ. We prove
the existence and uniqueness of strong solutions. The proof of the existence of
solution is based on a Galerkin scheme similar to that of [29, 11] in the case of
the 2D Navier-Stokes and the 3D Lagrangian averaged Navier-Stokes equations.
Let us note that the coupling between the Navier-Stokes and the Cahn-Hilliard
systems introduces in the system a highly nonlinear coupling term that makes the
analysis of the problems studied in this article more involved.

The article is divided as follows. In the next section we present the stochastic
Cahn-Hilliard-Navier-Stokes model and its mathematical setting. We also give
most of the notations and necessary preliminary used throughout this work. The
main results appear in the third section, where we use a Galerkin approximation to
prove the existence of strong solution. In the fourth section, we prove the pathwise
uniqueness and the convergence of the whole Galerkin approximate solution.
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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2. The stochastic CH-NSE and its mathematical setting

2.1. Governing equations. We assume that the domain M of the fluid is a
bounded domain in ℜ2. Then, we consider the system




dv + [−ν1∆v + (v · ∇)v +∇p−Kµ∇ϕ] dt = g1(t, v, ϕ)dt

+

∫

Z

σ(t, v, ϕ, z)η̃(dt, dz) in (0, T )×M,

div v = 0 in (0, T )×M,
∂ϕ
∂t

+ v · ∇ϕ− ν3∆µ = 0 in (0, T )×M,

µ = −ν2∆ϕ+ αf(ϕ) in (0, T )×M.

(2.1)

In (2.1), the unknown functions are the velocity v = (v1, v2) of the fluid, its
pressure p and the order (phase) parameter ϕ.

The terms g1(t, v, ϕ) and
∫
Z
σ(t, v, ϕ, z)η̃(dt, dz) respectively represent the de-

terministic and the random external forces that eventually depend on (v, ϕ), and
η̃ is a compensated Poisson measure on a measurable space (Z,Z) endowed with
a fixed Σ−finite measure ν. Precise assumption on the data are given below. The
model (2.1) describes the motion of a binary fluid exited by random forces.

The quantity µ is the variational derivative of the following free energy func-
tional

Fp(ϕ) =

∫

M

(ν2
2
|∇ϕ|2 + αF (ϕ)

)
ds, (2.2)

where, e.g., F (r) =
∫ r

0
f(ζ)dζ. Here, the constants ν1 > 0, ν3 > 0 and K >

0 correspond to the kinematic viscosity of the fluid, the mobility constant and
the capillarity (stress) coefficient respectively. Here ν2, α > 0 are two physical
parameters describing the interaction between the two phases. In particular, ν2 is
related with the thickness of the interface separating the two fluids.

A typical example of potential F is that of logarithmic type.
However, this potential is often replaced by a polynomial approximation of the

type F (r) = γ1r
4 − γ2r

2, γ1, γ2 being positive constants. As noted in [25], (2.1)1
can be replaced by

dv(t) + [−ν1∆v + (v · ∇)v +∇p̃] dt =

∫

Z

σ(t, v, ϕ, z)η̃(dt, dz)

+ [−Kdiv (∇ϕ⊗∇ϕ) + g1(t, v, ϕ)] dt,
(2.3)

where p̃ = p − K( ν2

2 |∇ϕ|2 + αF (ϕ)), since Kµ∇ϕ = ∇(K( ν2

2 |∇ϕ|2 + αF (ϕ))) −
Kdiv (∇ϕ⊗∇ϕ). The stress tensor ∇ϕ⊗∇ϕ is considered the main contribution
modeling capillary forces due to surface tension at the interface between the two
phases of the fluid.

Regarding the boundary conditions for these models, we assume that the bound-
ary conditions for ϕ are the natural no-flux condition

∂ηϕ = ∂η∆ϕ = 0, on ∂M× (0,∞), (2.4)

where ∂M is the boundary of M and η is the outward normal to ∂M. These
conditions ensure the mass conservation. Note that (2.4) implies that

∂ηµ = 0, on ∂M× (0,∞). (2.5)
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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From (2.5), we deduce the conservation of the following quantity

⟨ϕ(t)⟩ = 1

|M|

∫

M
ϕ(x, t)dx, (2.6)

where |M| stands for the Lebesgue measure of M. More precisely, we have

⟨ϕ(t)⟩ = ⟨ϕ(0)⟩, ∀t ≥ 0. (2.7)

Concerning the boundary condition for v, we assume the Dirichlet (no-slip) bound-
ary condition

v = 0, on ∂M× (0,∞). (2.8)

Therefore we assume that there is no relative motion at the fluid-solid interface.
The initial condition is given by

(v, ϕ)(0) = (v0, ϕ0), in M. (2.9)

2.2. Mathematical setting. We first recall from [25] a weak formulation of
(2.1), (2.4), (2.8)-(2.9). Hereafter, we assume that the domain M is bounded with
a smooth boundary ∂M (e.g., of class C3). We also assume that f ∈ C2(ℜ) satisfies

{
lim

|r|→+∞
f

′
(r) > 0,

|f ′
(r)| ≤ cf (1 + |r|k), ∀r ∈ ℜ,

(2.10)

where cf is some positive constant and k ∈ [1,+∞) is fixed. It follows from (2.10)
that

|f(r)| ≤ cf (1 + |r|k+1), ∀r ∈ ℜ. (2.11)

Note that the derivative of the typical double-well potential f satisfies conditions
similar to (2.10). Let us now recall from [25] the functional set up of the model
(2.1), (2.4), (2.8),(2.9).

If X is a real Hilbert space with inner product (·, ·)X , we will denote the induced
norm by | · |X , while X∗ will indicate its dual. We set

V1 = {u ∈ (C∞
c (M))2 : div u = 0, in M}.

We denote byH1 and V1 the closure of V1 in (L2(M))2 and (H1
0 (M))2 respectively.

The scalar product in H1 is denoted by (·, ·)L2 and the associated norm by | · |L2 .
Moreover, the space V1 is endowed with the scalar product

((u, v)) =

2∑
i=1

(∂xiu, ∂xiv)L2 , ∥u∥ = ((u, u))1/2.

We now define the operator A0 by

A0u = −P1∆u, ∀u ∈ D(A0) = (H2(M))2 ∩ V1,

where P1 is the Leray-Helmotz projector in (L2(M))2 onto H1. Then, A0 is a
self-adjoint positive unbounded operator in H1 which is associated with the scalar
product defined above. Furthermore, A−1

0 is a compact linear operator on H1 and
|A0 · |L2 is a norm on D(A0) that is equivalent to the H2−norm.

We introduce the linear nonnegative unbounded operator on L2(M)

A1ϕ = −∆ϕ, ∀ϕ ∈ D(A1) = {ϕ ∈ H2(M), ∂ηϕ = 0, on ∂M}, (2.12)
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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and we endow D(A1) with the norm |A1 · |L2 + |⟨ · ⟩|L2 , which is equivalent to the
H2−norm. We also define the linear positive unbounded operator on the Hilbert
space L2

0(M) of the L2− functions with null mean

Bnϕ = −∆ϕ, ∀ϕ ∈ D(Bn) = D(A1) ∩ L2
0(M). (2.13)

Note that B−1
n is a compact linear operator on L2

0(M). More generally, we can

define Bs
n, for any s ∈ ℜ, noting that |Bs/2

n ·|L2 , s > 0, is an equivalent norm to the

canonical Hs− norm on D(B
s/2
n ) ⊂ Hs(M)∩L2

0(M). Also note that A1 = Bn on

D(Bn). If ϕ is such that ϕ−⟨ϕ⟩ ∈ D(B
s/2
n ), we have that |Bs/2

n (ϕ−⟨ϕ⟩)|L2+|⟨ϕ⟩|L2

is equivalent to the Hs−norm. Moreover, we set H−s(M) = (Hs(M))∗, whenever
s < 0.

Finally we set

H2 = D(B0
n) = L2

0(M), V2 = D(B1/2
n ). (2.14)

The norms in H2 and V2 are denoted respectively by | · |L2 and ∥ · ∥, where ∥ψ∥ =

|B1/2
n ψ|L2 .
We introduce the bilinear operators B0, B1 (and their associated trilinear forms

b0, b1) as well as the coupling mapping R0, which are defined from D(A0)×D(A0)
into H1, D(A0)×D(A1) into L2(M), and (L2(M))2× (D(A1)∩H3(M)) into H1,
respectively. More precisely, we set

⟨B0(u, v), w⟩ =
∫

M
[(u · ∇)v] · wdx = b0(u, v, w), ∀u, v, w ∈ D(A0),

⟨B1(u, ϕ), ρ⟩ =
∫

M
[(u · ∇)ϕ]ρdx = b1(u, ϕ, ρ), ∀u ∈ D(A0), ϕ, ρ ∈ D(A1),

⟨R0(µ, ϕ), w⟩ =
∫

M
µ[∇ϕ · w]dx = b1(w, ϕ, µ),

∀w ∈ D(A0), ϕ ∈ D(A1) ∩H3(M), µ ∈ L2(M).

Note that

R0(µ, ϕ) = Pµ∇ϕ.

We recall from [25] (see also [26, 27]) that B0, B1 and R0 satisfy the following
estimates

|B0(u, v)|V ∗
1
≤ c|u|1/2L2 ∥u∥1/2∥v∥, ∀u, v ∈ V1,

|B0(u, v)|L2 ≤ c|u|1/2L2 ∥u∥1/2∥v∥1/2|A0v|1/2L2 , ∀u ∈ V1, v ∈ D(A0),
(2.15)

|B1(u, ϕ)|V ∗
2
≤ c|u|1/2L2 ∥u∥1/2∥ϕ∥, ∀u ∈ V1, ϕ ∈ V2,

|B1(u, ϕ)|L2 ≤ c|u|1/2L2 ∥u∥1/2∥ϕ∥1/2|A1ϕ|1/2L2 , ∀u ∈ V1, ϕ ∈ D(A1),
(2.16)

|R0(A1ϕ, ρ)|V ∗
1
≤ c|A1ϕ|1/2L2 |ϕ|1/2H3 ∥ρ∥, ∀ϕ ∈ D(A1), ρ ∈ V2,

|R0(A1ϕ, ρ)|L2 ≤ c∥ρ∥1/2|A1ρ|1/2L2 |A1ϕ|1/2L2 |ϕ|1/2H3 ,

∀ϕ ∈ D(A1), ρ ∈ D(A
3/2
1 ).

(2.17)

We recall that (due to the mass conservation) we have

⟨ϕ(t)⟩ = ⟨ϕ(0)⟩ = M0, ∀t > 0. (2.18)
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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Thus, up to a shift of the order parameter field, we can always assume that the
mean of ϕ is zero a the initial time and, therefore it will remain zero for all positive
times. Hereafter, we assume that

⟨ϕ(t)⟩ = ⟨ϕ(0)⟩ = 0, ∀t > 0. (2.19)

We set
H = H1 ×D(B1/2

n ). (2.20)

The space H is a complete metric space with respect to the norm

|(v, ϕ)|2H = K−1|v|2L2 + ν2|∇ϕ|2L2 . (2.21)

We define the Hilbert space U by

U = V1 ×D(Bn), (2.22)

endowed with the scalar product whose associated norm is

∥(v, ϕ)∥2U = ∥v∥2 + |Bnϕ|2L2 . (2.23)

We will also denote by c a generic positive constant that depends on the domain
M. To simplify the notations, we set (without loss of generality) ν1 = ν2 = ν3 =
α = K = 1.

Using the notations above, we rewrite (2.1), (2.4), (2.8)-(2.6) as




dv + [A0v +B0(v, v)−R0(A1ϕ, ϕ)] dt = g1(t, v, ϕ)dt

+

∫

Z

σ(t, v, ϕ, z)η̃(dt, dz),

dϕ
dt

+A1µ+B1(v, ϕ) = 0,

µ = A1ϕ+ f(ϕ),
(v, ϕ)(0) = (v0, ϕ0).

(2.24)

Remark 2.1. In the weak formulation (2.24), the term µ∇ϕ is replaced by A1∇ϕ.

This is justified since f
′
(ϕ)∇ϕ is the gradient F (ϕ) and can be incorporated into

the pressure gradient, see [25] for details. For the sake of convenience, as in
[25] we will replace µ in (2.24)3 by µ̄ = µ − ⟨µ⟩, that is µ̄ = A1ϕ + f(ϕ) −
⟨f(ϕ)⟩, a.e., in M× (0, T ). Obviously we have ⟨µ̄(t)⟩ = 0, ∀t > 0.

Notations. We first recall from [29, 11] some notations and stochastic prelimi-
naries.

Hereafter, by ℵ we denote the set of nonnegative integers, i.e. ℵ = {0, 1, 2, · · · }
and by ℵ̄ we denote the set ℵ∪{+∞}. Whenever we speak about ℵ (or ℵ̄)−valued
measurable functions we implicitly assume that the set is equipped with the trivial
Σ-field 2ℵ (or 2ℵ̄). By ℜ+ we will denote the interval [0,∞) and by ℜ∗ the set ℜ\
{0}. If X is a topological space, then by B(X) we will denote the Borel Σ−field on
X. By λd we will denote the Lebesgue measure on (ℜd,B(ℜd)), by λ the Lebesgue
measure on (ℜ,B(ℜ)).

If (S,S) is a measurable space then by M(S) we denote the set of all real valued
measures on (S,S), and by M(S) the Σ−field on M(S) generated by the functions
iB : M(S) ∋ ς �→ ς(B) ∈ ℜ, B ∈ S. By M+(S) we denote the set of all nonnegative
measures on S, and by M(S) the Σ−field on M+(S) generated by the functions
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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iB : M+(S) ∋ ς �→ ς(B) ∈ ℜ+, B ∈ S. Finally, by MI(S) we denote the family of
all ℵ̄valued measures on (S,S), and by MI(S) the Σ−field on MI(S) generated
by functions iB : M(S) ∋ ς �→ ς(B) ∈ ℵ̄, B ∈ S. If (S,S) is a measurable space
then we will denote by S⊗ B(ℜ+) the product Σ−field on S × ℜ+ and by ν ⊗ λ
the product measure of ν and the Lebesgue measure λ.

Preliminaries. As mentioned earlier we will study a stochastic model for a CH-
NSE excited by random forces. We first describe the forces acting on the fluids.
Let (Z,Z) be a separable metric space and let ν be a Σ−finite positive measure on
it. Suppose that P = (Ω,F,F,P) is a filtered probability space, where F = (F)t≥0

is a filtration satisfying the usual conditions, and η : Ω×B(ℜ+)×Z → ℵ̄ is a time
homogeneous Poisson random measure, with intensity measure ν, defined over the
filtered probability spaceP. A time homogeneous Poisson random measure defined
over P is given in the following definition.

Definition 2.2. Let Z be a metric space and Z its Borel Σ−algebra, ν a positive
Σ−finite measure on (Z,Z). A Poisson random measure, with intensity measure ν
defined on (Z,Z) over P is a measurable map η : (Ω,F) → (MI(Z ×ℜ+),MI(Z ×
ℜ+)) satisfying the following conditions:

(i) for all B ∈ B(Z ⊗ ℜ+), η(B) : Ω → ℵ̄ is a Poisson random measure with
parameter E[η(B)];

(ii) η is independently scattered, i.e., if the sets Bj ∈ B(Z ⊗ ℜ+), j = 1, ..., n,
are disjoint then the random variables η(Bj), j = 1, · · · , n, are independent;

(iii) for all U ∈ Z and I ∈ B(ℜ+)

E[η(U × I)] = λ(I)ν(U);

(iv) for all U ∈ Z the ℵ̄−valued process (N(U, t))t≥0 defined by N(U, t) := η(U ×
(0, t]), t ≥ 0, is F−adapted and its increments are independent of the past, i.e., if
t > s ≥ 0, then the random variableN(U, t)−N(U, s) = η(U×(s, t]) is independent
of Fs.

We will denote by η̃ the compensated Poisson random measure defined by

η̃ := η − γ,

where the compensator γ : B(Z × ℜ+) → ℜ+ is defined by

γ(A× I) = λ(I)ν(A), I ∈ B(ℜ+), A ∈ Z.

As noted in [29], while items (i) and (ii) are the classical definition, see for
e.g. Definition 6.1 in [39], of a Poisson Random measure η, the remaining items

implicitly indicate that η is associated to a certain Lévy process L̃; see, for instance
[[39], Proposition 4.16].

Let M2(ℜ+, L
2(Z, ν,H1)) be the class of all progressively measurable processes

ξ : ℜ+ × Z × Ω → H1 satisfying the condition

E
∫ T

0

∫

Z

|ξ(r, z)|2L2ν(dz)dr < ∞, ∀T > 0. (2.25)

If T > 0, the class of all progressively measurable processes ξ : [0, T ] × Z ×
Ω → H1 satisfying the condition (2.25) just for this one T, will be denoted by
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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M2(0, T, L2(Z, ν,H1)). Also, let M2
step(ℜ+, L

2(Z, ν,H1)) be the space of all pro-

cesses ξ ∈ M2(ℜ+, L
2(Z, ν,H1)) such that

ξ(r) =
n∑

j=1

1(tj−1,tj ](r)ξj , 0 ≤ r, (2.26)

where {0 = t0 < t1 < ... < tn < ∞} is a partition of [0,∞), and for all j, ξj is an
Ftj−1− measurable random variable.

For any ξ ∈ M2
step(ℜ+, L

2(Z, ν,H1)), we set

Ĩ(ξ) =

n∑
j=1

∫

Z

ξj(z)η̃(dz, (tj−1, tj ]).

This is basically the definition of stochastic integral of a random step process ξ
with respect to the compound random Poisson measure η̃. The extension of this
integral on M2(ℜ+, L

2(Z, ν,H1)) is possible thanks to the following result which
is taken from [39].

Theorem 2.3. There exists a unique bounded linear operator

I : M2(ℜ+, L
2(Z, ν;H1)) → L2(Ω,F;H1)

such that for ξ ∈ M2
step(ℜ+, L

2(Z, ν,H1)) we have Ĩ(ξ) = I(ξ). In particular, there

exists a constant C = C(H1) such that for any ξ ∈ M2(ℜ+, L
2(Z, ν,H1)),

E
����
∫ t

0

∫

Z

ξ(r, z)η̃(dz, dr)

����
2

L2

≤ CE
∫ t

0

∫

Z

|ξ(r, z)|2L2η(dz)dr, t > 0.

Moreover, for each ξ ∈ M2(ℜ+, L
2(Z, ν,H1)), the process I(1[0,t]ξ), t ≥ 0, is an

H1−valued càdlàg martingale. The process 1[0,t]ξ is defined by [1[0,t]ξ](r, z, ω) :=
1[0,t](r)(r, z, ω), t ≥ 0, r ∈ ℜ+, z ∈ Z and ω ∈ Ω.

As usual we will write
∫ t

0

∫

Z

ξ(r, z)η̃(dz, dr) := I(ξ)(t), t ≥ 0.

If T > 0, we denote by D(0, T ;H1) the space of all càdlàg paths from [0, T ] into
H1.

Now we introduce the main set of hypotheses used in this article. As in [29, 11],
we suppose that we are given a function σ satisfying the following set of constraints:

Condition 1. There exist nonnegative constants l0, l1, l2 such that, for any
t ∈ [0, T ] and all (v1, ϕ1), (v2, ϕ2) ∈ H, we have

|σ(t, v1, ϕ1)|pL2(Z,ν;H1)
≤ l0 + l1|(v1, ϕ1)|pH; for any p ≥ 2,

|σ(t, v1, ϕ1)− σ(t, v2, ϕ2)|2L2(Z,ν;H1)
≤ l2|(v1, ϕ1)− (v2, ϕ2)|2H.

(2.27)

We assume that the external forcing g1 is a measurable Lipschitz and sublinear
mappings from Ω×(0, T )×H1 into V

∗
1 .More precisely, for all (v1, ϕ1), (v2, ϕ2) ∈ V1,
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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g1(·, v1, ϕ1) is Ft−progressively measurable, and dP× dt−a.e. in Ω× (0, T )

∥g1(t, v1, ϕ1)− g1(t, v2, ϕ2)∥V ∗
1
≤ L1|v1 − v2|L2 ,

g1(t, 0, 0) ∈ M2
Ft
(0, T ;V ∗

1 ).
(2.28)

Finally, we assume that

(v0, ϕ0) ∈ L2(Ω,F0,P;H). (2.29)

Hereafter, for any (w,ψ) ∈ H, we set

E(w,ψ) = |w|2L2 + ∥ψ∥2 + 2⟨F (ψ), 1⟩+ c1, (2.30)

where c1 > 0 is a constant large enough and independent on (w,ψ) such that
E(w,ψ) is nonnegative (note that F is bounded from below).

We can check that (see [25]) there exists a monotone non-decreasing function
Q0 (independent on time and the initial condition) such that

|(w,ψ)|2H ≤ E(w,ψ) ≤ Q0(|(w,ψ)|2H), ∀(w,ψ) ∈ H. (2.31)

Definition 2.4. Let (Z,Z) be a separable metric space on which is defined a
Σ−finite measure ν and (v0, ϕ0) ∈ L2(Ω,F0,P;H). A strong solution to the prob-
lem (2.24) is a stochastic process (v, ϕ) such that

(1) (v, ϕ) = {(v, ϕ)(t), t ≥ 0} is a F−progressively measurable process such
that

E sup
s∈[0,T ]

E(v(s), ϕ(s)) + E
∫ T

0

∥(v, ϕ)(s)∥2Udt < ∞,

(2) the following holds

(v(t), w) = (v0, w) +

∫ t

0

∫

Z

⟨σ(s, v, ϕ, z), w⟩η̃(dz, ds)

−
∫ t

0

⟨A0v +B0(v, v)−R0(A1ϕ, ϕ)− g1(s, v, ϕ), w⟩ds, ∀w ∈ V1,

(ϕ(t), ψ) = (ϕ0, ψ)−
∫ t

0

⟨A1µ+B1(v, ϕ), ψ⟩ds, ∀ψ ∈ V2,

µ = A1ϕ+ f(ϕ),

(2.32)

for almost all t ∈ [0, T ] and P−almost surely.

In the deterministic case, the weak formulation of (2.24) was proposed and
studied in [8, 6, 7, 26, 25] (see also [2, 1, 15]), where the existence and uniqueness
results for weak and strong solutions were proved in the deterministic case.

Before we prove this result let us recall an important statement which is bor-
rowed from [17].

Lemma 2.5. Let X,Y, I and φ be non-negative processes and Z1 be a non-negative
integrable random variable. Assume that I is non-decreasing and that there exist
non-negative constants C,α1, β, γ1, δ1 and T satisfying first

∫ T

0

φ(s)ds ≤ C, a.s., 2β1e
C ≤ 1, 2δ1e

C ≤ α1,
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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and secondly for all t ∈ [0, T ] there exists a constant C1 > 0 such that

X(t) + α1Y (t) ≤ Z1 +

∫ t

0

φ(r)X(r)dr + I(t), a.s.,

EI(t) ≤ βEX(t) + γ1

∫ t

0

EX(s)ds+ δ1EY (t) + C1.

If X ∈ L∞([0, T ]× Ω), then we have

E[X(t) + α1Y (t)] ≤ 2 exp(C + 2tγ1e
C)(EZ + C1), t ∈ [0, T ].

3. Existence and uniqueness of solutions

In this section, we prove the existence and the pathwise uniqueness of variational
solution to (2.24). We first prove the following energy type equality.

Proposition 3.1. If (v, ϕ) is a variational solution to (2.24), then (v, ϕ) satisfies

E(v, ϕ)(t) +
∫ t

0

(
2∥v(s)∥2 + ∥µ(s)∥2

)
ds = E(v0, ϕ0)

+2

∫ t

0

⟨g1(s, v(s), ϕ(s)), v(s)⟩ds+
∫ t

0

∫

Z

Υ(s, z)η(dz, ds)

+2

∫ t

0

∫

Z

(v(s−), σ(s, v(s), ϕ(s), z))η̃(dz, ds),

(3.1)

where
Υ(s, z) = |v(s−) + σ(s, v(s), ϕ(s), z)|2L2 − |v(s−)|2L2

−2(v(−s), σ(s, v(s), ϕ(s), z)).
(3.2)

Proof. Applying Itô’s formula to |v(t)|2L2 , we derive that

|v(t)|2L2 = |v0|2L2 + 2

∫ t

0

(
−∥v(s)∥2 + g1(s, v(s), ϕ(s)), v(s)⟩

)
ds

+2

∫ t

0

⟨R0(A1ϕ(s), ϕ(s)), v(s)⟩ds

+2

∫ t

0

∫

Z

(v(s−), σ(s, v(s), ϕ(s), z))η̃(dz, ds) +

∫ t

0

∫

Z

Υ(s, z)η(dz, ds),

(3.3)

where Υ(s, z) is given by (3.2).
Now multiplying (2.24)2 with µ, we obtain

d

dt

(
∥ϕ(t)∥2 + 2⟨F (ϕ(t)), 1⟩+ c1

)
+ 2⟨B1(v(t), ϕ(t)), µ(t)⟩ = 0. (3.4)

Integrating (3.4) and adding the result to (3.3) gives

E(v, ϕ)(t) = E(v0, ϕ0)−
∫ t

0

(2∥v(s)∥2 + ∥µ(s)∥2)ds

+2

∫ t

0

⟨g1(s, v(s), ϕ(s)), v(s)⟩ds

+2

∫ t

0

∫

Z

(v(s−), σ(s, v(s), ϕ(s), z))η̃(dz, ds) +

∫ t

0

∫

Z

Υ(s, z)η(dz, ds),

(3.5)

where Υ(s, z) is given by (3.2).
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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Note that we use the properties of B0, B1 and R0 given in (2.15). In particular,
we used the fact that ( see [25])

⟨B0(v, v), v⟩ = 0, ⟨R0(A1ϕ, ϕ), v⟩ = ⟨B1(v, ϕ), µ⟩ = ⟨B1(v, ϕ), A1ϕ⟩.

We also use the fact that

⟨ϕ′, µ⟩ = d
dt

(
1
2∥ϕ∥

2 + ⟨F (ϕ(t)), 1⟩
)

= d
dt

(
1
2∥ϕ∥

2 + ⟨F (ϕ(t)), 1⟩+ 1
2c1

)
.

(3.6)

where c1 is the the constant that appears in (2.30). □

3.1. Uniqueness of solutions. The following result implies the pathwise unique-
ness of the variational solutions (v, ϕ) to (2.24).

Proposition 3.2. Let (v10 , ϕ
1
0), (v

2
0 , ϕ

2
0) be two F0−measurable and square inte-

grable H−valued random variables. Let (v1, ϕ1), (v2, ϕ2) be the variational solu-
tion to (2.24) corresponding to (v10 , ϕ

1
0), (v

2
0 , ϕ

2
0) respectively. Then there exists a

constant C > 0 such that

Eδ(t)|(v1, ϕ1)− (v2, ϕ2)|2H ≤ CE|(v10 , ϕ1
0)− (v20 , ϕ

2
0)|2H, (3.7)

for all t∈ [0, T ], where δ(t) is defined by (3.22).
Moreover, if (v10 , ϕ

1
0) = (v20 , ϕ

2
0) almost surely, then for any t ∈ [0, T ],

P((v1, ϕ1)(t) = (v2, ϕ2)(t)) = 1. (3.8)

Proof. Let (v1, ϕ1), (v2.ϕ2) be variational solutions to (2.24). Let (w,ψ, µ) =
(v1, ϕ1, µ1)− (v2, ϕ2, µ2), µ̄ = µ− ⟨µ⟩. Then (w,ψ) satisfies



dw + [A0w +B0(v2, w) +B0(w, v1)]dt = [g1(t, v1, ϕ1)− g1(t, v2, ϕ2)]dt
+[R0(A1ϕ2, ψ) +R0(A1ψ, ϕ1)]dt

+

∫

Z

(σ(t, v1, ϕ1, z)− σ(t, v2, ϕ2, z))η̃(dz, dt),

dψ
dt

+A1µ̄+B1(v2, ψ) +B1(w, ϕ1) = 0,

µ = A1ψ + f(ϕ1)− f(ϕ2),
(w,ψ)(0) = (0, 0)

(3.9)

Reasoning as in the proof of Proposition (3.1) above, applying Itô’s formula to
|w|2L2 and using (3.9)1, we derive that

|w|2L2 + 2

∫ t

0

(∥w∥2 + b0(w, v1, w))ds

= 2

∫ t

0

⟨g1(t, v1, ϕ1)− g1(t, v2, ϕ2), w⟩ds

+2

∫ t

0

⟨R0(A1ϕ2, ψ) +R0(A1ψ, ϕ1), w⟩ds

+2

∫ t

0

∫

Z

(w(s−), σ(s, v1(s), ϕ1(s), z)− σ(s, v2(s), ϕ2(s), z))η̃(dz, ds)

+

∫ t

0

∫

Z

|σ(s, v1(s), ϕ1(s), z)− σ(s, v2(s), ϕ2(s), z))|2L2η(ds, dz).

(3.10)
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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Now we take the duality of (3.9)2 and (3.9)3 with A1µ̄−ζA1ψ and A1ψ respectively,
where ζ > 0 is small enough and will be selected later. Adding the resulting
equality to (3.10), we derive that

|w(t)|2 + ∥ψ(t)∥2 + 2

∫ t

0

(∥w∥2 + ζ|A1ψ|2L2 + ∥µ∥2)ds

= 2

∫ t

0

(⟨R0(A1ϕ2, ψ) +R0(A1ψ, ϕ1), w⟩ − b0(w, v1, w))ds

−2

∫ t

0

(b1(w, ϕ,A1ψ) + b1(v, ψ,A1ψ))ds+

∫ t

0

ζ⟨µ̄, A1ψ⟩ds

+2

∫ t

0

[ζ⟨f(ϕ1)− f(ϕ2), A1ψ⟩ − ⟨f(ϕ1)− f(ϕ2), A1µ̄⟩]ds

+2

∫ t

0

⟨g1(t, v1, ϕ1)− g1(t, v2, ϕ2), w⟩ds

+2

∫ t

0

∫

Z

(w(s−), σ(s, v1(s), ϕ1(s), z)− σ(s, v2(s), ϕ2(s), z))η̃(dz, ds)

+

∫ t

0

∫

Z

|σ(s, v1(s), ϕ1(s), z)− σ(s, v2(s), ϕ2(s), z))|2L2η(dz, ds).

(3.11)

Note that

|b0(w, v1, w)| ≤
1

8
∥w∥2 + c∥v1∥2|w|2L2 , (3.12)

|⟨R0(A1ψ, ϕ1), w⟩| = |b1(w, ϕ1, A1ψ)|
≤ 1

8 (∥w∥
2 + ζ|A1ψ|2L2) + c|w|2L2∥ϕ1∥2|A1ϕ1|2L2 ,

(3.13)

|⟨R0(A1ϕ2, ψ), w⟩| = |b1(w,ψ,A1ϕ2)|
≤ 1

8 (∥w∥
2 + ζ|A1ψ2|2L2) + c(|w|2L2 + |∇ψ|2L2)∥ϕ2∥2|ϕ2|2H2 ,

(3.14)

ζ|⟨f(ϕ1)− f(ϕ2), A1ψ⟩| ≤ ζ
8 |A1ψ|2L2

+Q1(|ϕ1|H1 , |ϕ2|H1)∥ψ∥2, (3.15)

|⟨f(ϕ1)− f(ϕ2), A1µ̄⟩| ≤ 1
2 |A

1/2
1 µ̄|2L2

+Q1(|ϕ1|H1 , |ϕ2|H1)(|A1ϕ1|2L2 + |A1ϕ2|2L2)∥ψ∥2,
(3.16)

|b1(v2, ψ,A1ψ)| ≤
ζ

8
|A1ψ|2L2 + c|v2|2L2∥v2∥2∥ψ∥2, (3.17)

ζ|(µ̄, A1ψ)L2 | ≤ ζ

8
|A1ψ|2L2 + cζ|∇µ̄|2L2 , (3.18)

|⟨g1(t, v1, ϕ1)− g1(t, v2, ϕ2), w⟩| ≤ L1∥w∥|(w,ψ)|H
≤ 1

8∥w∥
2 + cL2

1|(w,ψ)|2H,
(3.19)

∥σ(s, v1, ϕ1)− σ(s, v2, ϕ2)∥2L2(Z,µ,V1)
≤ l22|(w,ψ)|2H. (3.20)

Let
Y2(t) = |w(t)|2L2 + ∥ψ(t)∥2,

and

K1(t) = c(∥v1∥2 + ∥ϕ1∥2|A1ϕ1|2L2 + ∥ϕ2∥2|A1ϕ2|2L2 + |v2|2L2∥v2∥2)

+Q1(|ϕ1|H1 , |ϕ2|H1)(|A1ϕ1|2L2 + |A1ϕ2|2L2) + cL2
1 + l22,

(3.21)

δ(t) = exp

(
−
∫ t

0

K1(s)ds

)
. (3.22)
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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Applying Itô’s formula to the process δ(t)Y2(t) and using (3.11)-(3.20), we derive
that

Eδ(t)Y2(t) + E
∫ t

0

δ(s)(∥w∥2 + (1− cζ)∥µ̄∥2 + ζ|A1ψ|2L2)ds

≤ EY2(0) + E
∫ t

0

δ(s)Y2(s)ds.

(3.23)

Note that the expectation of the stochastic integral in (3.11) vanishes. Therefore
we obtain

Eδ(t)Y2(t) ≤ EY2(0) + E
∫ t

0

δ(s)Y2(s)ds, 0 ≤ t ≤ T.

It follows from the Gronwall lemma that there exists a constant C > 0 such that

Eδ(t)Y2(t) ≤ CEY2(0),

for any t ∈ [0, T ], which proves the first part of the proposition. Since δ(t) is
bounded and positive P−a.s., we conclude that the second part of the proposition
follows from the last estimate. Note that in (3.23), we choose ζ > 0 and small
enough such that 1− cζ > 0. □

3.2. Existence of solution. In this part, we prove the existence of solution.
The method relies on Galerkin approximation.

Proposition 3.3. We assume that Condition 1 above is satisfied. Moreover, we
suppose that g1(·, 0, 0) ∈ L4(Ω, L2(0, T ;L2(0, T ;V ∗

1 )), (v0, ϕ0) ∈ L2(Ω,F0,P;H)

satisfies E [E(v0, ϕ0)]
2
< ∞. Then, there exists a unique solution

(v, ϕ) ∈ L4(Ω,D(0, T ;H1)× C(0, T ;V2)) ∩ L4(Ω, L2(0, T ;U)).

Furthermore, the following estimate holds:

E sup
t∈[0,T ]

E(v(t), ϕ(t)) + E
∫ T

0

∥(v(s), ϕ(s))∥2Uds ≤ C, (3.24)

provided that EE(v0, ϕ0) < ∞, and

E sup
t∈[0,T ]

[E(v(t), ϕ(t))]p + E

(∫ T

0

∥(v(s), ϕ(s))∥2Uds

)p

≤ C, (3.25)

for any positive integer p ≥ 2, provided that E[E(v0, ϕ0)]
p < ∞.

Proof. Let {(wi, ψi), i = 1, 2, 3, · · · } ⊂ U be an orthonormal basis of H, where
{wi, i = 1, 2 · · · }, {ψi, i = 1, 2 · · · } are eigenvectors of A0 and A1 respectively.
We set Um = Hm = span{(w1, ψ1), · · · (wm, ψm)}. We look for (vm, ϕm) ∈ Hm

solution to

dvm(t) = −Π1
m [A0vm +B0(vm, vm)−R0(A1ϕm, ϕm)] dt

+Π1
mg1(s, vm, ϕm)dt+

∫

Z

Π1
mσ(t, vm(t−), ϕm(t−), z)η̃(dt, dz),

dϕm(t) = −Π2
m [A1µm +B1(vm, ϕm)] dt,

µm = A1ϕm + f(ϕm),

(3.26)
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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where Πm ≡ (Π1
m,Π2

m) is the orthogonal projection of H onto Hm.
As in the proof of Theorem 1.2.1 of [3], we can obtain the existence and uniqueness
of a solution (vm, ϕm) ∈ L2(Ω× [0, T ];Um) of (3.26) on an interval [0, Tm].

For each n ≥ 1, we consider the Ft−stopping time τn defined by:

τn = T ∧ inf
t∈[0,T ]

{
E(vm, ϕm)(t) +

∫ t

0

(∥vm(s)∥2 + ∥µ̄m(s)∥2)ds ≥ n2

}
, (3.27)

where hereafter a ∧ b = min(a, b).
For fixed m, the sequence {τn;n ≥ 1} is increasing to T. Throughout we fix

r ∈ [0, T ] and 0 ≤ t ≤ r ∧ τn. Now using Itô’s formula, we derive that as in the
proof of (3.1) that

E(vm, ϕm)(t) +

∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

= E(v0, ϕ0) + 2

∫ t

0

⟨g1(s, vm(s), ϕm(s)), vm(s)⟩ds

+2

∫ t

0

∫

Z

(vm(s−), σ(s, vm(s−), ϕm(s−), z))η̃(dz, ds)

+

∫ t

0

∫

Z

Υ(s, z)η(dz, ds),

(3.28)

where

Υ(s, z) = |vm(s−) + σ(s, vm(s−), ϕm(s−), z)|2L2

−|vm(s−)|2L2 − (vm(s−), σ(s, vm(s−), ϕm(s−), z)).

From the fact that |x|2 − |y|2 + |x− y|2 = 2⟨x− y, x⟩, it follows that

E(vm(t), ϕm(t)) +

∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds = E(v0, ϕ0)

+2

∫ t

0

⟨g1(s, vm(s), ϕm(s)), vm(s)⟩ds

+2

∫ t

0

∫

Z

(vm(s−), σ(s, vm(s−), ϕm(s−), z))η̃(dz, ds)

+

∫ t

0

∫

Z

|σ(s, vm(s−), ϕm(s−), z)|2L2η(dz, ds),

(3.29)

We define the following stochastic processes

X(t) = sup
s∈[0,t]

E(vm(s), ϕm(s)),

Y (t) =

∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds,

I(t) = 2

����
∫ t

0

∫

Z

(vm(s−), σ(s, vm(s−), ϕm(s−), z))η̃(dz, ds)

����
+

∫ t

0

∫

Z

|σ(s, vm(s−), ϕm(s−), z)|2L2η(dz, ds) ≡ sup
s∈[0,t]

|I1(s)|+ I2(t),
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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where

I1(t) = 2

∫ t

0

∫

Z

(vm(s−), σ(s, vm(s−), ϕm(s−), z))η̃(dz, ds),

I2(t) = sup
s∈[0,t]

∫ s

0

∫

Z

|σ(s, vm(s−), ϕm(s−), z)|2L2η(dz, ds).
(3.30)

Since I1(t) is a local martingale we can apply Burkholder-Davis-Gundy’s in-
equality to derive that

E sup
s∈[0,r∧τn]

|I1(s)| ≤

CE
(∫ r∧τn

0

∫

Z

(vm(s−), σ(s, (vm, ϕm)(s−), z))2ν(dz)ds

)1/2

.
(3.31)

Thanks to Hölder’s and Young’s inequalities we have

E sup
s∈[0,t]

|I1(s)| ≤ C

[
ϵE sup

s∈[0,t]

|vm(s)|2L2

]1/2

×
[
ϵ−1E

∫ t

0

∫

Z

|σ(s, vm(s), ϕm(s), z)|2L2ν(dz)ds

]1/2

≤ CϵE sup
s∈[0,t]

|vm(s)|2L2

+Cϵ−1E
∫ t

0

∫

Z

|σ(s, vm(s), ϕm(s), z)|2L2ν(dz)ds

≤ CϵE sup
s∈[0,t]

E(vm(s), ϕm(s))

+Cϵ−1E
∫ t

0

∫

Z

|σ(s, vm(s), ϕm(s), z)|2L2ν(dz)ds.

(3.32)

Using (2.27), we derive that

E sup
s∈[0,t]

|I1(s)| ≤ CϵX(t) + Cϵ−1l0t+ Cϵ−1

∫ t

0

EX(s)ds. (3.33)

Next, we will deal with the second term of I(t). Taking into account that the
process ∫ t

0

∫

Z

|σ(s, vm(s−), ϕm(s−), z)|2η(dz, ds)

has only positive jumps, we derive from (2.27) that

EI2(t) ≤ E
∫ t

0

∫

Z

|σ(s, vm(s), ϕm(s), z)|2L2ν(dz)ds

≤ l0t+ l1

∫ t

0

E|(vm(s), ϕm(s)|2Hds

≤ l0t+ l1

∫ t

0

EX(s)ds.

(3.34)

We also have

|2⟨g1(s, vm, ϕm), vm⟩| ≤ 2L1|(vm, ϕm)|H∥vm∥+ 2∥g1(s, 0, 0)∥V ∗
1
∥vm∥

≤ 1
8∥vm∥2 + cL2

1|(vm, ϕm)|2H + c∥g1(s, 0, 0)∥2V ∗
1
.

(3.35)
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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It follows from (3.28)-(3.35) that

EE(vm, ϕm)(t) +E
∫ t

0

(
∥vm(s)∥2 + ∥µm(s)∥2

)
ds ≤ EE(v0, ϕ0)

+cE
∫ t

0

E(vm, ϕm)(s)ds+ cE
∫ t

0

∥g1(s, 0, 0)∥2V ∗
1
ds.

(3.36)

Therefore from Lemma 2.5, we derive that there exist a positive constant C such
that

EE(vm, ϕm)(t) + E
∫ t

0

(
∥vm(s)∥2 + ∥µm(s)∥2

)
ds ≤ C, (3.37)

for any m ∈ ℵ and t ∈ [0, r ∧ τn], r ∈ [0, T ].
We have just shown that ∀t ∈ [0, T ], we have

E sup
s∈[0,t∧τn]

E(vm, ϕm)(t) + E
∫ t

0

(
∥vm(s)∥2 + ∥µm(s)∥2

)
ds ≤ C, (3.38)

from which we can infer that

P(τn < t) ≤ Cn−2, ∀t ∈ [0, T ], ∀n > 0.

Hence, limn→+∞ P(τn < t) = 0, for all t ∈ [0, T ]. That is, τn → +∞ in probability.
Therefore, there exists a subsequence τnk

such that τnk
→ +∞, a.s. Since the

sequence (τn)n is increasing, we infer that τnk
↗ +∞ a.s.. Now we use Fatou’s

lemma and pass to the limit in (3.38) and derive that

E sup
s∈[0,t]

E(vm(s), ϕm(s)) + E
∫ t

0

(
∥vm(s)∥2 + ∥µ̄m(s)∥2

)
ds ≤ C, (3.39)

and (3.24) is proved.
To prove (3.25), we proceed as follows. First, without loss of generality, we may

assume that for any given m, the process (vm, ϕm) is uniformly bounded in [0, T ].
Otherwise, we can introduce a sequence of stopping times as before.

By raising both sides of (3.28) to the power of p ≥ 2, we derive that

E sup
s∈[0,t]

[E(vm(t), ϕm(t))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p

≤ E[E(v0, ϕ0)]
p + cE sup

s∈[0,t]

|I3(s)|p + cE sup
s∈[0,t]

|I4(s)|p

+cE
[∫ t

0

∥g1(s, 0, 0)∥2V ∗
1
ds

]p
,

(3.40)

where

I3(t) =∫ t

0

∫

Z

{
|vm(s−) + Π1

mσ(s, (vm, ϕm)(s−), z)|2L2 − |vm(s−)|2L2

}
η̃(dz, ds),

(3.41)
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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I4(t) =∫ t

0

∫

Z

{
|vm(s) + Π1

mσ(s, vm, ϕm)(s), z)|2L2 − |vm(s)|2L2

}
ν(dz)ds

−2

∫ t

0

∫

Z

(vm(s),Π1
mσ(s, vm(s), ϕm(s), z))ν(dz)ds

≤ c

∫ t

0

∫

Z

|Π1
mσ(s, vm(s), ϕm(s), z))|2L2ν(dz)ds

≤ c

∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds.

(3.42)

As in [10, 13], we note that
∫

Z

{
|vm(s−) + Π1

mσ(s, (vm, ϕm)(s), z)|2L2 − |vm(s−)|2L2

}2
ν(dz)

≤ |vm(s−)|2L2

∫

Z

|σ(s, (vm, ϕm)(s), z)|2L2ν(dz)

+c

∫

Z

|σ(s, (vm, ϕm)(s), z)|4L2ν(dz)

≤ c0 + c1|vm(s)|2L2 + c2|vm(s)|4L2

≤ k1 + k4|vm(s)|4L2 .

(3.43)

It follows that

(∫ t

0

∫

Z

{
|vm(s−) + Π1

mσ(s, vm, ϕm, z)|2L2 − |vm(s−)|2L2

}2
ν(dz)ds

)p/2

≤ c(k1T )
p/2 + c(k2)

p/2

(∫ t

0

|(vm, ϕm)(s)|4Hds

)p/2

.

(3.44)

We derive that

E sup
s∈[0,t]

|I3(s)|p ≤ cp(k1T )
p/2

+cp(k2)
p/2E

[(∫ t

0

|(vm, ϕm)(s)|4Hds

)p/2
]

≤ c+ 1
2E

(
sup

s∈[0,t]

|vm(s)|2L2

)p

+ cE
(∫ t

0

|vm(s)|2L2ds

)p

.

(3.45)

From Hölder’s inequality, we have

∫ t

0

|(vm, ϕm)(s)|2Hds ≤
(∫ t

0

|(vm, ϕm)(s)|2pH ds

)1/p (∫ t

0

1ds

) p−1
p

≤ T
p−1
p

(∫ t

0

|(vm, ϕm)(s)|2pH ds

)1/p

,

(3.46)

which gives

(∫ t

0

|(vm, ϕm)(s)|2Hds

)p

≤ cTP−1

∫ t

0

|(vm, ϕm)(s)|2pH ds. (3.47)



9418 G. DEUGOUÉ AND T. TACHIM MEDJO

From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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0
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≤ C,

(3.57)

E
∫ T

0
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∫ T

0
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E
∫ T

0
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∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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Proposition 3.5. We have the following identities

β♭
0 = B0(v, v), r♭0 = R0(A1ϕ, ϕ),

β♭
1 = B1(v, ϕ), f ♭ = f(ϕ), σ(t, v, ϕ, z) = σ♭.

(3.62)

Proposition 3.6. For any n ≥ 1 we have that as m −→ +∞,

1[0,τn]((vm, ϕm)− (v, ϕ)) −→ (0, 0) in L2(Ω× [0, T ];U), (3.63)

and

E|(vm, ϕm(τn))− (v, ϕ)(τn)|H −→ 0 as n −→ +∞. (3.64)

Proof. Let

(ṽm, ϕ̃m, µ̃m) = Πm(v, ϕ, µ),

where Πm ≡ (Π1
m,Π2

m) is the orthogonal projection of H onto Hm. It follows that

|(ṽm, ϕ̃m)|H ≤ |(v, ϕ)|H
∥(ṽm, ϕ̃m)∥U ≤ c∥v, ϕ)∥U ,
(ṽm, ϕ̃m) → (v, ϕ) in U for almost every (ω, t) ∈ Ω× [0, T ],

(ṽm, ϕ̃m) → (v, ϕ) in L2(Ω× [0, T ];U),
E(|(ṽm, ϕ̃m)(τn)− (v, ϕ)(τn)|H) → 0 as n → +∞.

(3.65)

From (3.26) and (3.61), we derive that for 1 ≤ k ≤ m, we have

⟨ṽm(t)− vm(t), wk⟩+
∫ t

0

⟨A0(ṽm − vm), wk⟩ds

+

∫ t

0

⟨β♭
0 −B0(vm, vm), wk⟩ds =

∫ t

0

⟨r♭0 −R0(A1ϕm, ϕm), wk⟩ds

+

∫ t

0

⟨g♭1 − g1(s, vm, ϕm), wk⟩ds

+

∫ t

0

∫

Z

[
σ(s, vm(s−), ϕm(s−), z)− σ♭(s, z), wk

]
η̃(dz, ds),

⟨ϕ̃m(t)− ϕm(t), A1ψk⟩+
∫ t

0

⟨A1(µ̃m − µm), A1ψk⟩ds

+

∫ t

0

⟨β♭
1 −B1(vm, ϕm), A1ψk⟩ds = 0,

⟨µ̃m − µm, A1ψk⟩ = ⟨A1(ϕ̃m − ϕm), A1ψk⟩+ ⟨f ♭ − f(ϕm), A1ψk⟩.

(3.66)

Note that

β♭
0 −B0(vm, vm) = β♭

0 −B0(ṽm, ṽm) +B0(ṽm − vm, ṽm)
+B0(vm, ṽm − vm),

r♭0 −R0(A1ϕm, ϕm) = r♭0 −R0(A1ϕ̃m, ϕ̃m) +R0(A1(ϕ̃m − ϕm), ϕ̃m)

+R0(A1ϕm, ϕ̃m − ϕm),

β♭
1 −B1(vm, ϕm) = β♭

1 −B1(ṽm, ϕ̃m) +B1(ṽm − vm, ϕ̃m)

+B1(vm, ϕ̃m − ϕm),

f ♭ − f(ϕm) = f ♭ − f(ϕ̃m) + f(ϕ̃m)− f(ϕm).
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.

STOCHASTIC CAHN-HILLIARD-NAVIER-STOKES 21

Let us set θm = ṽm− vm, ρm = ϕ̃m−ϕm, ζm = µ̃m−µm. From the Itô’s formula,
we have

|θm(t)|2L2 + 2

∫ t

0

(∥θm∥2 + ⟨β♭
0 −B0(vm, vm), θm⟩)ds

= 2

∫ t

0

⟨r♭0 −R0(A1ϕm, ϕm), θm⟩ds+ 2

∫ t

0

⟨g♭1 − g1(s, vm, ϕm), θm⟩ds

+2

∫ t

0

∫

Z

[
σ(vm(s−), ϕm(s−), z)−Π1

mσ♭(s, z)
]
η̃(dz, ds)

+

∫ t

0

∫

Z

Υ(s, z)η(dz, ds),

(3.67)

where

Υ(s, z) = |vm(s−) + σm(s, (vm, ϕm)(s−), z)−Π1
mσ♭(s, z)|2L2

−|vm(s−)|2L2 − 2⟨σm(s, (vm, ϕm)(s−), z)−Π1
mσ♭(s, z), vm(s−)⟩

= |σ(s, (vm, ϕm)(s−), z)−Π1
mσ♭(s, z)|2L2 .

Replacing ψk in (3.66)3 and (3.66)2 respectively by ζ̄m − ξρm and ρm gives

d
dt

∥ρm∥2 + 2∥ζ̄m∥2 + 2ξ|A1ρm|2L2 + 2⟨β♭
1 −B1(ṽm, ϕ̃m), A1ρm⟩

+2⟨B1(θm, ϕ̃m), A1ρm⟩+ 2⟨B1(vm, ρm), A1ρm⟩+ ξ⟨ζm, A1ρm⟩
+ξ⟨f ♭ − f(ϕm), A1ρm⟩ − ⟨f ♭ − f(ϕm), A1ζm⟩ = 0.

(3.68)

Note that

⟨β♭
0 −B0(vm, vm), θm⟩ = ⟨β♭

0 −B0(ṽm, ṽm), θm⟩+ ⟨B0(θm, ṽm), θm⟩
≤ ⟨β♭

0 −B0(ṽm, ṽm), θm⟩+ 1
4∥θm∥2 + c∥ṽm∥2|θm|2L2 ,

(3.69)

⟨β♭
1 −B1(vm, ϕm), A1ρm⟩ = ⟨β♭

1 −B1(ṽm, ϕ̃m), A1ρm⟩
+⟨B1(θm, ϕ̃m), A1ρm⟩+ ⟨B1(vm, ρm), A1ρm⟩
≤ ⟨β♭

1 −B1(ṽm, ϕ̃m), A1ρm⟩+ 1
4 (∥θm∥2 + ξ

4 |A1ρm|2L2)
+c∥ϕm∥2|A1ϕm|2L2 |θm|2L2 + c|ṽm|2L2∥ṽm∥2∥ρm∥2,

(3.70)

⟨r♭0 −R0(A1ϕm, ϕm), θm⟩ = ⟨r♭0 −R0(A1ϕ̃m, ϕ̃m), θm⟩
+⟨R0(A1ρm, ϕ̃m), θm⟩+ ⟨R0(A1ϕm, ρm), θm⟩
≤ ⟨r♭0 −R0(A1ϕ̃m, ϕ̃m), θm⟩+ 1

4 (∥θm∥2 + ξ
4 |A1ρm|2L2)

+c|A1ϕm|2L2(|θm|2L2 + ∥ρm∥2) + c∥ϕ̃m∥2|A1ϕ̃m|2L2 |θm|2L2 ,

(3.71)

⟨f ♭ − f(ϕm), A1ζm⟩ = ⟨f ♭ − f(ϕ̃m), A1ζm⟩+ ⟨f(ϕ̃m)− f(ϕm), A1ζm⟩
≤ ⟨f ♭ − f(ϕ̃m), A1ζm⟩+ 1

2∥ζm∥2
+Q1(∥ϕ̃m∥, ∥ϕm∥)(|A1ϕm|2L2 + |A1ϕ̃m|2L2)∥ρm∥2,

(3.72)

ξ⟨f ♭ − f(ϕm), A1ρm⟩ = ξ⟨f ♭ − f(ϕ̃m) + f(ϕ̃m)− f(ϕm), A1ρm⟩
≤ ξ⟨f ♭ − f(ϕ̃m), A1ζm⟩+ ξ

8 |A1ρm|2L2

+Q1(∥ϕ̃m∥, ∥ϕm∥)∥ρm∥2,
(3.73)

|ξ⟨ζm, A1ρm⟩ ≤ ξ

2
∥ζm∥2 + ξ

4
|A1ρm|2L2 , (3.74)

Υ(s, z) = |σm(s, vm(s−), ϕm(s−), z)−Π1
mσ♭(s, z)|2L2

= |Π1
m[σ(s, vm(s−), ϕm(s−), z)− σ(s, v(s−), ϕ(s−), z)|2L2

−|Π1
m[σ(s, v(s−), ϕ(s−), z)− σ♭(s, z)|2L2 + S1(s, z),

(3.75)
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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where

S1(s, z) =
2⟨Π1

m[σ(s, (vm, ϕm)(s−), z)− σ♭(s, z)],Π1
m[σ(s, (v, ϕ)(s−), z)− σ♭(s, z)]⟩.

From (2.27) and (3.75), we derive that

Υ(s, z) ≤ l2|(vm(s−), ϕm(s−))|2H + l2|(vm, ϕm)(s−)− (v, ϕ)(s−)|2H
−|Π1

m[σ(s, v(s−), ϕ(s−), z)− σ♭(s, z)|2L2 + S1(s, z).
(3.76)

We also have

⟨g1(s, ṽm, ϕ̃m)− g1(s, vm, ϕm), θm⟩ ≤ L1|(θm, ρm)|H∥θm∥
≤ 1

4∥θm∥2 + cL2
1|(θm, ρm)|2H.

(3.77)

Let

Z(t) = |θm(t)|2L2 + ∥ρm(t)∥2 = |(ṽm − vm)(t)|2L2 + ∥(ϕ̃m − ϕm)(t)∥2,
Y1(t) = c∥ṽm∥2 + c∥ϕm∥2|A1ϕm|2L2 + c|ṽm|2L2∥ṽm∥2 + c|A1ϕm|2L2

+c∥ϕ̃m∥2|A1ϕ̃m|2L2 +Q1(∥ϕ̃m∥, ∥ϕm∥)(1 + |A1ϕm|2L2 + |A1ϕ̃m|2L2)
+cL2

2 + cL2
1,

K2(t) = ∥θm∥2 + (1− cξ)∥ζm∥2 + cξ|A1ρm|2L2 ,

where ξ is small enough such that 1− cξ > 0.
Let

δ(t) = exp

(
−
∫ t

0

Y1(s)ds

)
,

Using (3.67)-(3.77), it follows from Ito’s formula that

Eδ(t)Z(t) +E
∫ t

0

δ(s)K2(s)ds

+E
∫ t

0

δ(s)|Π1
m[σ(s, (v, ϕ)(s), z)− σ♭(s, z)|2L2ds

≤ E
∫ t

0

δ(s)⟨ − β♭
0 +B0(ṽm, ṽm), θm⟩ds

+E
∫ t

0

δ(s)⟨ − β♭
1 +B1(ṽm, ϕ̃m), A1ρm⟩ds

+E
∫ t

0

δ(s)⟨r♭0 −R0(A1ϕ̃m, ϕ̃m), θm⟩ds

+E
∫ t

0

δ(s)⟨g♭1 − g1(s, ṽm, ϕ̃), θm⟩ds

+E
∫ t

0

∫

Z

δ(s)S1(s, z)η(dz, ds).

(3.78)

For each n ≥ 1, we consider the Ft−stopping time τn defined by:

τn = min

(
T, inf

{
t ∈ [0, T ]; |(v, ϕ)|2H +

∫ t

0

∥(v, ϕ)∥2Uds ≥ n2

})
.
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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We derive from (3.78) that

E(τn)δ(s) Z(τn) + cE
∫ τn

0

δ(s)K2(s)ds

+E
∫ τn

0

δ(s)|Π1
m[σ(s, (v, ϕ)(s), z)− σ♭(s, z)|2L2ds

≤ 2E
∫ τn

0

δ(s)⟨ − β♭
0 +B0(ṽm, ṽm), θm⟩ds

+2E
∫ τn

0

δ(s)⟨g♭1 − g1(s, ṽm, ϕ̃m), θm⟩ds

+2E
∫ τn

0

δ(s)⟨r♭0 −R0(A1ϕ̃m, ϕ̃m), θm⟩ds

+2E
∫ τn

0

δ(s)⟨ − β♭
1 +B1(ṽm, ϕ̃m), A1ρm⟩ds

+E
∫ τn

0

∫

Z

δ(s)S1(s, z)η(dz, ds).

(3.79)

Claim 1. The right side of (3.79) goes to 0 as m goes to +∞.

(i). Since Π1
m ◦Π1

m = Π1
m and ∥Π1

m∥ ≤ 1, it follows that

1[0,τn]δ(s)Π
1
m[σ(s, v(s), ϕ(s), z)− σ♭(s, z)]

is bounded in L2(Ω× [0, T ];L2(Z, ν;H1)). Therefore, from (3.60)6 we see that

lim
m→∞

E
∫ τn

0

∫

Z

δ(s)S1(s, z)η(dz, ds) = 0.

(ii). Let us now prove that

lim
m→∞

E
∫ τn

0

δ(s)⟨ − β♭
0 +B0(ṽm, ṽm), θm⟩ds = 0. (3.80)

We recall that

(vm, ϕm) ⇀ (v, ϕ), (ṽm, ϕ̃m) → (v, ϕ), (ṽm, ϕ̃m)− (vm, ϕm) ⇀ (0, 0)
in L2(Ω× [0, T ];U). (3.81)

We also have

lim
m→∞

E
∫ τn

0

δ(s)⟨ − β♭
0 +B0(ṽm, ṽm), θm⟩ds

= lim
m→∞

E
∫ τn

0

δ(s)⟨ − β♭
0 +B0(v, v), θm⟩ds

+ lim
m→∞

E
∫ τn

0

δ(s)⟨ −B0(v, v) +B0(ṽm, ṽm), θm⟩ds.

(3.82)

From (3.81) and the fact that 1|[0,τn]δ(t)(−β♭
0 + B0(v, v)) ∈ L2(Ω × [0, T ];V ∗

1 ), it
follows that

lim
m→∞

E
∫ τn

0

δ(s)⟨ − β♭
0 +B0(v, v), θm⟩ds = 0. (3.83)

We also note that

∥ −B0(v, v) +B0(ṽm, ṽm)∥V ∗
1

≤ c|ṽm − v|1/2L2 ∥ṽm − v∥1/2(∥ṽm∥1/2|ṽm|1/2L2 + ∥v∥1/2|v|1/2L2 ),
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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which implies that

∥1|[0,τn](−B0(v, v) +B0(ṽm, ṽm))∥V ∗
1
→ 0 as m → ∞, dt× dP− a.e.,

∥1|[0,τn](−B0(v, v) +B0(ṽm, ṽm))∥V ∗
1
≤ cn∥v∥ ∈ L2(Ω× [0, T ];ℜ).

It follows that

lim
m→∞

E
∫ τn

0

δ(s)⟨ −B0(v, v) +B0(ṽm, ṽm), θm⟩ds = 0. (3.84)

We conclude from (3.83) and (3.84) that

lim
m→∞

E
∫ τn

0

δ(s)⟨ − β♭
0 +B0(ṽm, ṽm), θm⟩ds = 0, (3.85)

which proves (3.80).
(iii). Next we will prove that

lim
m→∞

E
∫ τn

0

δ(s)⟨r♭0 −R0(A1ϕ̃m, ϕ̃m), θm⟩ds = 0. (3.86)

From (3.81) and the fact that

1|[0,τn]δ(t)(r
♭
0 −R0(A1ϕ, ϕ)) ∈ L2(Ω× [0, T ];V ∗

1 ),

we also have

lim
m→∞

E
∫ τn

0

δ(s)⟨r♭0 −R0(A1ϕ, ϕ), θm⟩ds = 0. (3.87)

We also note that

∥R0(A1ϕ̃m, ϕ̃m)−R0(A1ϕ, ϕ)∥V ∗
1

≤ c|A1(ϕ̃m − ϕ)|L2∥ϕ∥1/2|A1ϕ|1/2L2

+c∥ϕ̃m − ϕ∥1/2|A1(ϕ̃m − ϕ)|1/2L2 |A1ϕ̃m|L2 ,

which implies that

∥1|[0,τn](R0(A1ϕ̃m, ϕ̃m)−R0(A1ϕ, ϕ))∥V ∗
1
→ 0 as m → ∞, dt× dP− a.e.,

∥1|[0,τn](R0(A1ϕ̃m, ϕ̃m)−R0(A1ϕ, ϕ))∥V ∗
1
≤ cn∥v∥ ∈ L2(Ω× [0, T ];ℜ).

It follows that

lim
m→∞

E
∫ τn

0

δ(s)⟨R0(A1ϕ̃m, ϕ̃m)−R0(A1ϕ, ϕ), θm⟩ds = 0. (3.88)

We conclude from (3.87) and (3.88) that

lim
m→∞

E
∫ τn

0

δ(s)⟨r♭0 −R0(A1ϕ̃m, ϕ̃m), θm⟩ds = 0, (3.89)

which proves (3.86).
(iv). Let us now prove that

lim
m→∞

E
∫ τn

0

δ(s)⟨ − β♭
1 +B1(ṽm, ϕ̃m), A1ρm⟩ds = 0.
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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Following similar steps as in (3.85) and (3.89), can check that

lim
m→∞

E
∫ τn

0

δ(s)⟨ − β♭
1 +B1(ṽm, ϕ̃m), A1ρm⟩ds

= lim
m→∞

E
∫ τn

0

δ(s)⟨ − β♭
1 +B1(v, ϕ), A1ρm⟩ds

+ lim
m→∞

E
∫ τn

0

δ(s)⟨ −B1(v, ϕ) +B1(ṽm, ϕ̃m), A1ρm⟩ds = 0.

(v). Let us also prove that

lim
m→∞

E
∫ τn

0

δ(s)⟨g♭1(s)− g1(s, ṽm, ϕ̃m), θm⟩ds = 0.

From (3.81) and the fact that

1|[0, τn]δ(t)(g♭1(t)− g1(t, v, ϕ)) ∈ L2(Ω× [0, T ];V ∗
1 ) and

1|[0, τn]δ(t)(g1(t, v, ϕ)− g1(t, ṽm, ϕ̃m)) → 0 in L2(Ω× [0, T ];V ∗
1 )

as m → ∞,

we derive that

lim
m→∞

E
∫ τn

0

δ(s)⟨g♭1(s)− g1(s, v, ϕ), θm⟩ds = 0,

lim
m→∞

E
∫ τn

0

δ(s)⟨g1(s, v, ϕ)− g1(s, ṽm, ϕ̃m), θm⟩ds = 0.
(3.90)

Therefore, we derive that

lim
m→∞

E
∫ τn

0

δ(s)⟨g♭1(s)− g1(s, ṽm, ϕ̃m), θm⟩ds

= lim
m→∞

E
∫ τn

0

δ(s)⟨g♭1(s)− g1(s, v, ϕ), θm⟩ds

+ lim
m→∞

E
∫ τn

0

δ(s)⟨g1(s, v, ϕ)− g1(s, ṽm, ϕ̃m), θm⟩ds = 0,

The proof of the convergence of the other terms is similar.
Finally we conclude that the right side of (3.79) goes to 0 as m goes to +∞.
Now using the fact that 1|[0, τn]δ(t) ≤ 1, we derive from (3.79) that

lim
m→∞

E|(θm, ψm)(τn)|2H
= lim

m→∞
E
(
|(ṽm, ϕ̃m)(τn)− (vm, ϕm)(τn)|2H

)
= 0,

lim
m→∞

E
∫ τn

0

K2(s)ds

= lim
m→∞

E
∫ τn

0

(
∥θm∥2 + (1− cξ)∥ζm∥2 + ξ|A1ρm|2L2

)
ds

= lim
m→∞

E
∫ τn

0

(
∥ṽm − vm∥2 + (1− cξ)∥µ̃m − µm∥2

)
ds

+ lim
m→∞

E
∫ τn

0

ξ|A1(ϕ̃m − ϕm)|2L2ds = 0.

(3.91)

□
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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We now give the proof of Proposition 3.4.

Proof of Proposition 3.4. Our goal is to prove that the following hold true.

σ(s, v, ϕ, z) = σ♭(s, z) in L2(Ω× [0, T ];L2(Z, ν,H1)),
B0(v, v) = β♭

0 in L2(Ω× [0, T ];V ∗
1 ),

R0(A1ϕ, ϕ) = r♭0 in L2(Ω× [0, T ];V ∗
1 ),

B1(v, ϕ) = β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
g1(t, v, ϕ) = g♭1(t) in L2(Ω× [0, T ];V ∗

1 ).

(3.92)

It is clear that (3.92)1, follows from (3.53)6.
To prove (3.92)2, we proceed as follows. We note that from (3.91)2 and (3.65),

we also have

(vm, ϕm)|[0,τn] → (v, ϕ)|[0,τn] in L2(Ω× [0, T ];U).
Therefore, for any w ∈ L∞(Ω× [0, T ];V1), we have

E
∫ τn

0

⟨B0(v, v)−B0(vm, vm), w⟩ds ≤

c∥w∥L∞(Ω×[0,T ];V1) × E
∫ τn

0

∥vm − v∥1/2|vm − v|1/2L2 (∥v∥+ ∥vm∥)ds,

which gives

lim
m→∞

E
∫ τn

0

⟨B0(v, v)−B0(vm, vm), w⟩ds = 0. (3.93)

From (3.60)3 and (3.93), we derive that

E
∫ τn

0

⟨B0(v, v)− β♭
0, w⟩ = 0, ∀w ∈ L∞(Ω× [0, T ];V1).

Since τn ↑ T and L∞(Ω× [0, T ];V1) is dense in L2(Ω× [0, T ];V1), we conclude that

B0(v, v) = β♭
0 in L2(Ω× [0, T ];V ∗

1 ).

This proves (3.92)2.
To prove (3.92)3, we note that

E
∫ τn

0

⟨R0(A1ϕ, ϕ)−R0(A1ϕm, ϕm), w⟩ds ≤

c∥w∥L∞(Ω×[0,T ];V1)E
∫ τn

0

|A1(ϕm − ϕ)|1/2L2 ∥ϕ∥1/2|A1ϕ|1/2L2 ds+

c∥w∥L∞(Ω×[0,T ];V1)E
∫ τn

0

∥ϕm − ϕ∥1/2|A1(ϕm − ϕ)|1/2L2 |A1ϕm|L2ds,

which gives

lim
m→∞

E
∫ τn

0

⟨R0(A1ϕ, ϕ)−R0(A1ϕm, ϕm), w⟩ds = 0. (3.94)

From (3.60)4 and (3.94), we derive that

E
∫ τn

0

⟨R0(A1ϕ, ϕ)− r♭0, w⟩ = 0, ∀w ∈ L2(Ω× [0, T ];V1),

which gives
R0(A1ϕ, ϕ) = r♭0 in L2(Ω× [0, T ];V ∗

1 ),
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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and (3.92)3 is proved.
Similarly, we can prove that

B1(v, ϕ) = β♭
1 in L2(Ω× [0, T ];V ∗

2 ), g1(t, v, ϕ) = g♭1(t) in L2(Ω× [0, T ];V ∗
1 ). □

3.3. Convergence of the whole sequence of the Galerkin approximation.
In this part, we prove the convergence of the whole sequence of the Galerkin
approximation to the solution (v, ϕ) of (2.24).

Theorem 3.7. The whole sequence of solutions to the Galerkin approximation
{(vm, ϕm); m ∈ ℵ} defined by (3.26) satisfies

lim
m→∞

E|(vm, ϕm)(T−)− (v, ϕ)(T−)|2H = 0,

lim
m→∞

E∥(vm, ϕm)− (v, ϕ)∥2U = 0.
(3.95)

Proof. For the proof, we first recall from [9, 16] the following lemma.

Lemma 3.8. Let {Qm; m ≥ 1} ⊂ L2(Ω×[0, T ];ℜ) be a sequence of continuous real
processes, and let {τn;n ≥ 1} be a sequence of Ft−stopping times such that τn ↑ T ;
sup
m≥1

E|Qm(T )|2 < ∞, and lim
m→∞

E|Qm(τn)| = 0, for n ≥ 1. Then lim
m→∞

E|Qm(T )| =

0.

Applying Lemma 3.8 to Qm(t) = |(v, ϕ) − (vm, ϕm)|2H and δn = τn and using
(3.25), (3.91)1 and the uniqueness of (v, ϕ), we conclude that the whole sequence
given by (3.26) satisfies

lim
m→∞

E|(v, ϕ)− (vm, ϕm)|2H = 0, ∀t ∈ [0, T ].

Similarly, applying Lemma 3.8 to Qm(t) =

∫ t

0

∥(v, ϕ)(s) − (vm, ϕm)(s)∥2Uds and

using (3.25), (3.91)2, we conclude that the whole sequence (vm, ϕm) converges to
(v, ϕ) strongly in L2(Ω× [0, T ];U), i.e.,

lim
m→∞

E
∫ t

0

∥(v, ϕ)(s)− (vm, ϕm)(s)∥2Uds = 0, ∀t ∈ [0, T ].

□
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E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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noise. Science in China Series A: Mathematics, 52(7):1497–1524, 2009.

22. Dong, Z. and Zhai, J.: Martingale solutions and Markov selection of stochastic 3D Navier-

Stokes equations with jump. Journal of Differential Equations, 250(6):2737–2778, 2011.
23. Faris, W. G. and Jona-Lasinio, G.: Large fluctuations for a nonlinear heat equation with

noise. J. Phys. A, 15(10):3025–3055, 1982.
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From (2.11) and (3.26)3, we also have

|f(ϕm)|L2 ≤ c(1 + ∥ϕm∥k+1) ≤ c(1 + E(vm, ϕm)
k+1
2 ),

|A1ϕm|L2 ≤ c|µm|L2 + c|f(ϕm)|L2

≤ c|µm|L2 + c(1 + E(vm, ϕm)
k+1
2 ),

(3.55)

|ϕm|2H3 ≤ c∥µm∥2 + c|f ′
(ϕm)∇ϕm|2L2

≤ c∥µm∥2 + c∥ϕm∥2k+1|A1ϕm|L2 .
(3.56)

It follows from (3.54)-(3.55) that

E sup
[0,T ]

|(vm, ϕm)|2H ≤ C, E
∫ T

0

∥(vm(s), ϕm(s)∥2Uds ≤ C,

E
∫ T

0

|ϕm(s)|2H3ds ≤ C, E sup
t∈[0,T ]

|f(ϕm)|L2 ≤ C,

E
∫ T

0

[
|B0(vm, vm)|2V ∗

1
+ |R0(A1ϕm, ϕm)|2V ∗

1
+ |B1(vm, ϕm)|2V ∗

2

]
ds ≤ C,

E sup
[0,T ]

|(vm, ϕm)|4H ≤ C, E

[∫ T

0

∥(vm(s−), ϕm(s−)∥2Uds

]2

≤ C,

(3.57)

E
∫ T

0

∥σ(s, vm(s), ϕm(s), z)∥2L2(Z,ν,H1)
ds ≤ l0T

+l1E
∫ T

0

|(vm(s−), ϕm(s−))|2Hds ≤ C,

(3.58)

E
∫ T

0

|f(ϕm)|2L2ds ≤ cE
∫ T

0

(1 + E(vm, ϕm)k+1)ds ≤ C. (3.59)

From (3.57), we can find a subsequence still denoted {(vm, ϕm)} such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω× [0, T ];U),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0, in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1 in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm(s−), ϕm(s−), ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)). □

(3.60)

As in [11, 29], we can check that v is an H1-valued càdlàg and F-progressively mea-
surable process, and ϕ is an V2-valued continuous and F-progressively measurable
process. Moreover (v, ϕ) satisfies for all 0 ≤ t ≤ T

v(t) +

∫ t

0

A0vds+

∫ t

0

β♭
0(s)ds = v0 +

∫ t

0

(r♭0(s) + g♭1(s))ds

+

∫ t

0

∫

Z

σ♭(s, z)η̃(dz, ds),

ϕ(t) +

∫ t

0

A1µ
♭ds+

∫ t

0

β♭
1(s)ds = ϕ0, µ♭ = A1ϕ+ f ♭,

(3.61)

P−a.s. as a equality in U∗.
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by multiplicative Lévy noises. Bernoulli, 21(4):2351–239, 2015. 

46. Mustafa Kemal Yilmaz, Sidika Basci & Muruvvet Buyukboyaci., Earnings Yield, Market-to-Book Ratio 
and Dividend Yield as Predictors of Stock Returns: Evidence from the Istanbul Stock Exchange, The 
Global Journal of Finance and Economics,  

47. Subarna K. Samanta & Sascha Szyfman., Impact of an Interest on Reserves Regime on Monetary Policy 
Effectiveness: Evidence from New Zealand,  Journal of World Economic Review  

48. Yu-Tung Peng, Hue Hwa Au Yong and Sirimon Treepongkaruna, Contagion and Flight-to-Quality: 
Evidences from the Asia-Pacific Economic Cooperation (APEC) Region, Review of Applied Economics  

49. Valerio Lintner., The Political Economy of European Economic Integration and the Economic 
Sovereignty of the Nations State, International Journal of Economics 

50. Shuang-Ling Chong & Ken P. Chong, Chong Cycle, Durability Issues and Accelerated Tests of Bridge 
Coatings, Journal of Mechanics and MEMS  

51. Bassim Shebeb & Ashraf Nakibullah, Understanding Monetary Policy of Bahrain, Global Review of 
Business and Economic Research 

52. Anjana Jain & KalyaniVijayan: X-ray Determination of the Thermal Expansion Coefficient of Nylon 6,6 
Fibers, International Journal of Electrospun Nanofibers and Applications 

53. Eiber Albrecht:  On the Simulation of Human Hearing, International Journal of Computational Vision 
and Biomechanics 

54. Song-Hao ZHU and Yun-Cai LIU, Automatic Video Partition for High-Level Search,  
International Journal of Computer Science, Information Technology and Management 

55. Elina Mikelsone: IDEA MANAGEMENT AND ORGANISATIONAL EFFECTIVENESS: A 
RESEARCH GAP, Journal of Business Management 

56. Magdi S. Mahmoud, Delay-Dependent Robust Stability and Control of Uncertain Discrete Singular 
Systems with State-Delay, International Journal of Contemporary Mathematics 

57. Houman B. Rokni, Reconstruction of Variational Iteration Method for Boundary Value Problems in 
Structural Engineering and Fluid Mechanics, International Journal of Nonlinear Dynamics in 
Engineering and Sciences  

58. A. H. Khater, Chebyshev Solution of Integral Equations with Singular Kernel, International Journal of 
Computational Mathematics and Numerical Simultation 
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From (3.45), (3.46), we get

E sup
s∈[0,t]

|I3(s)|p ≤ 1

2
E

(
sup

s∈[0,t]

|(vm, ϕm)(s)|2H

)p

+cp,T

∫ t

0

E|(vm, ϕm)(s)|2pH ds

≤ 1
2E sup

s∈[0,t]

[E(vm(s), ϕm(s))]p + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.48)

From (2.27) and (3.42), we also have

E|I4(t)|p ≤ cE
(∫ t

0

(1 + |(vm, ϕm)(s)|2H)ds

)p

≤ cp + cpE
(∫ t

0

|(vm, ϕm)(s)|2H)ds

)p

.

(3.49)

It follows that

E sup
s∈[0,t]

|I2(s)|p ≤ cp,T + cp,T

∫ t

0

|(vm, ϕm)(s)|2pH ds

≤ cp,T + cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds.

(3.50)

It follows from (3.40)-(3.50)

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p ≤ cp,T

+cp,T

∫ t

0

E[E(vm(s), ϕm(s))]pds+ c

(∫ t

0

∥g1(t, 0, 0)∥2V ∗
1

)p

,
(3.51)

and Gronwall’s lemma and (3.40) give

E sup
s∈[0,t]

[E(vm(s), ϕm(s))]p + E
[∫ t

0

(
2∥vm(s)∥2 + ∥µm(s)∥2

)
ds

]p
≤ C, (3.52)

and (3.25) follows. □

Proposition 3.4. We can extract from (vm, ϕm) a subsequence still labeled the
same and there exists a stochastic process (v, ϕ) such that

(vm, ϕm) ⇀ (v, ϕ) in L4(Ω, L∞([0, T ];H)),
(vm, ϕm) ⇀ (v, ϕ) in L2(Ω, L2([0, T ];U)),
B0(vm, vm) ⇀ β♭

0, R0(A1ϕm, ϕm) ⇀ r♭0 in L2(Ω× [0, T ];V ∗
1 ),

g1(t, vm, ϕm) ⇀ g♭1 in L2(Ω× [0, T ];V ∗
1 ),

B1(vm, ϕm) ⇀ β♭
1, f(ϕm) ⇀ f ♭ in L2(Ω× [0, T ];V ∗

2 ),
σ(t, vm, ϕm, ·) ⇀ σ♭ in L2(Ω× [0, T ];L2(Z, ν;H1)).

(3.53)

We note that

|B0(vm, vm)|V ∗
1
≤ c|vm|L2∥vm∥,

|R0(A1ϕm, ϕm)|V ∗
1
≤ c∥ϕm∥|A1ϕm|1/2L2 |ϕm|1/2H3 ,

|B1(vm, ϕm)|V ∗
2
≤ c|vm|L2∥ϕm∥1/2|A1ϕm|1/2L2 .

(3.54)
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