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A Mixed Model Reduction Method for the 
Discrete Time High-Order Systems
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Abstract :  There are several methods available for the reduction of high order linear continuous time systems. 
But few methods are available for the reduction of high order discrete time systems. In this paper, a new 
mixed procedure to reduce high order discrete systems is proposed. The proposed method of model order 
reduction is based on generating the reduced order denominator by the Modifi ed Factor Division Method [2] 
and numerator using Simplifi ed Routh Approximation Method [1]. The method is illustrated through typical 
numerical example.
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1. INTRODUCTION

The low order models are signifi cantly used in the control system stability analysis and controller design..  
Many methods available for the reduction of high order continuous time systems but only few are available 
for the reduction of discrete time systems. The familiar methods available in literature for the reduction 
of high order discrete time systems are viz., Stability Equation method of R. Prasad et.al [8]., Biased 
Continued Fraction Expansion Method suggested by Hwang et.al.[10] and Routh Approximation Method 
given by Farsi et.al.[4]  Routh approximation method suggested by Warwick et.al [4], Stability Equation 
method of Chen et.al [5], Biased continued fraction method proposed by Chee-Fai Young et.al [7] etc. This 
paper is to proposes  new method to reduce high order discrete  systems which overcomes  limitations with 
Factor Division Algorithm [3]. The proposed method is a mixed method which derives its denominator 
using Factor Division Method [2] and Numerator using SRAM [1]. This method gives the same results 
with much simpler computations than the Factor Division Algorithm [3]. The proposed method guarantees 
the stability of the high order discrete time system in the reduced order models. The proposed method 
is digital computer oriented. The effectiveness and computational simplicity of the proposed method is 
illustrated through a typical numerical example

2. THE PROPOSED METHOD

Consider original discrete time system defi ned by
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By applying the bilinear transformation z = p + 1, the system is transformed into p-domain. The 
transfer function in p-domain is defi ned as:  
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The kth order reduced model is to be found such that 

 Gk(p) = 
N( )
D( )

p
p

Denominator D (p)

D (p) is the reduced stable denominator which may be found by any of the many techniques available. 
Here in this work, Modifi ed Factor Division [2] is used to obtain the reduced order denominator D (p).

Let the original denominator be given as:  
 D  = an p

n + an-1 p
n-1 + ……..+ a0

Then the reduced order denominator is given by Q(p),

Where Q(p) = 
K( )

+
p

p h ; p + h is the unwanted pole factor.

Determination of ‘h’

The selection of ‘w’ is largely arbitrary, but for more reliable results, an approximation is given as
 ≤ h ≤ .

Where  = -1
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A better approximation is obtained by taking

 h = 
1 (  + )
2
 

Determination of K(P)

Let  AD(p) – BD(–p) = 0

 B = 
AD( )
D(– )

p
p

Then denominator of  eq.(1) i.e., K(p) is given as :
 K(p) = an p

n {A – (–1)nB} + an-1p
n-1 {A–(–1)n-1B} + … + a0(A–B) 

Where, A = D(h) ; B = D(– h)
By evaluating the eq(1) iteratively the required reduced order denominator is obtained, i.e., the reduced 

order denominator of kth order is obtained by successively applying the above procedure  (k–1) times.

Determination of numerator N (p)

The reduced numerator N (p) is obtained by using SRAM [1].
 Let the kth reduced order transfer function in p-domain  be of the form

 Gk(p) = 
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Where D (p) is the reduced order denominator obtained by Factor Division Method [2]. 
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The reduced order numerator Nk(t, m) (p) = Nkt (p) + Nkm(p)  ; k = t + m
Where t = No. time moments to be retained
 m = No. of Markov parameters to be retained
Then Nkt(p) = T1 + T2 + ...... + Tt  p

k – m + 1

 Nkm(p) = Mm p
k – m + ...... + M2  p

k – 2  + M1 p
k – 1

Where  T1 = 
0

0
0

.B  
A
a

 T2 = 0
1

0

.B
A
a

   

 

 Tt = 0
– 1

0

.B
A t
a

 (3)

And M1 = – 1
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By applying the inverse bilinear transformation p = z – 1, the reduced model in z-domain is obtained.
This proposed method doesn’t require the computation of  and  tables as in the Factor division 

method [3] and relatively very few steps of evaluation are involved which give exactly the same results as 
in the factor division method. This shows the simplicity of the proposed method over the former method.

3. EXAMPLE
Consider the system given by:
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G(z)  = 
7 6 5 4 3 2

8 7 6 5 4 3 2

0.1625 + 0.125 – 0.0025 – 0.00525 + 0.00262 – 0.0000875 + 0.003 – 0.000412
+ 0.6208 – 0.416 + 0.07613 – 0.05915 + 0.1906 + 0.09736 – 0.01635 + 0.002226

z z z z z z z
z z z z z z z z

   Reduced order transfer function of 2nd order :

 R2(z) = 2

 0.1625 – 0.02353
– 1.51 + 0.6344

z
z z   (Proposed method)

Reduced order model by  IBRAM [11]:

 R*
2(z) = 2

0.4094 – 0.2947
1.236 – 1.948  + 0.8158

z
z z  (IBRAM)

Fig 1 shows comparison of the step responses of the original system G(z) and its reduced 2nd order 
models obtained by the proposed method and IBRAM [11].

4. CONCLUSION
A new mixed procedure to reduce high order discrete  systems is proposed.. The proposed method is 
a mixed method using Factor Division Method and SRAM. The proposed method is computationally 
simple. The effectiveness and computational simplicity of the proposed method is illustrated through 
typical numerical example available in literature. 
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