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Abstract: This theoretical paper discusses recent advances in the fluid dynamics of insect
flight and considers theoretical analyses necessary for their future development.
Theoretically, the fluid dynamic description is based on: (i) the superposition of the unsteady
contributions of wing pitching, plunging and sweeping; and (ii) adding corrections due to
the bound leading-edge vortex and wake distortion. Viscosity is accounted for indirectly
by imposing the Kutta condition on the trailing edge and including the influence of the
vertical structure on the leading edge. In this paper, mathematically, an analytic approach
is proposed. It derives all the quantities of interest from the notion of circulation and leads
to tractable integral equation. This is an application of the von Karman-Sears unsteady
wing theory and its nonlinear extensions due to McCune and Taveres; the latter can account
for the bound leading-edge vortex and wake distortion. The paper also discusses connections
of the proposed analytical approach with aeroelasticity.

2000 Mathematics Subject Classification: 92B05, 00A71, 62P30.

Keywords: Insect flight, unsteady lift, flapping wing, von Karman-Sears theory,
mathematical modelling.

1. INTRODUCTION

The fluid mechanics of insect flight has a rich and most interesting history [1]. Among
other things, its study has helped to discover sophisticated mechanisms for lift generation
as that of Weis-Fogh [2, 3] and the paring of downward moving two-dimensional vortices
[4]. Apart from its biological interest, the understanding of the details of insect flight has
also technological interest, for instance, for the development of flying microvehicles [5-7].
In particular, of considerable importance are themechanisms associated to hovering at a
fixed position. For some insect such as small wasps, hovering seems to depend strongly on
the interaction of two wings, as in the Weis-Fogh mechanism [2]. For many other insects,
however, single wing effects are the most important [8]. In the past few years detailed
experiments with scaled insect model wing were performed, in which a careful determination
was made of forces resulting form imposed complex movements [9, 10].

Micro air vehicles (MAVs) are defined as flying vehicles of approximately six inches
in size (hand held) and are developed to reconnoitre in confined spaces (inside buildings,
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tunnels, etc.). This requires power-efficient, highly manoeuvrable, low-speed flight with
stable hover. Such performance is routinely exhibited by flying insects, hence the focus on
emulating insect-like flapping by engineering means.

From both the insect-flight-analysis and MAV-design perspectives there is a need for
an analytic framework for aerodynamic modelling of flapping wings. It should offer
qualitative and quantitative interpretations of the main phenomena involved, while avoiding
the extremes of mathematical oversimplification and intractable complexity. This problem
is the main motivation for the developments presented here.

The flow involved in insect flight is incompressible, laminar, unsteady and occurs at
low Reynolds numbers. However, our understanding of the resulting aerodynamics is
incomplete even on the phenomenological level. Not only is the qualitative picture unfinished,
but also the quantitative analysis is wanting. In fact, the few mathematical approaches
attempted involve either simple algebra or advanced computational fluid dynamics (CFD).
The CFD approach has not produced very satisfactory results yet, due to the complicated
kinematics of wing motion and the inadequacy of experimental data for full verification.
Also, the CFD route is very expensive in terms of code development and running and
therefore cannot be used as the main analytical and/or designtool.

This theoretical paper discusses recent advances in the fluid dynamics of insect flight
and considers theoretical analyses necessary for their future development. A new conceptual
framework is proposed as is, within this framework, an analytic approaches to aerodynamic
modelling of an insect-like flapping wing in hover in the context of MAVs. It is assumed
that, the wing is thin, rigid and of symmetrical section, while the flow is incompressible, of
low Reynolds number and Laminar.

The paper starts with a summery of the basics of insect flight in the section 2, focusing on
the wing kinematics, and the observed aerodynamic phenomena. Their interpretation and
proposed mathematical modeling and are described in the section 3. Mathematically, an
analytical approach is out lined. It is based on the von karman-sears unsteady wing theory
and its nonlinear extensions due to McCune and Tavares and leads to tractable integral equation.

2. BASICS OF INSECT FLIGHT

This section summarizes the basics of insect flight focusing on two issues: (1) flapping
wing kinematics, and (2) the main aerodynamic phenomena involved.

2.1 Wing Kinematics

Insects fly by oscillating (plunging) and rotating (pitching) their wings through large angles,
while sweeping them forwards and backwards. The wing beat cycle (typical frequency range



On the Unsteady Lift of Flapping Wing-A Mathematical Approach 181

of 5-200 Hz) can be divided into two phases: downstroke and upstroke (see Figures 1 and 2).
At the beginning of downstroke, the wing (as seen from the front of the insect) is in the
uppermost and rearmost position with the leading edge pointing forward. The wing is then
pushed downwards (plunged) and forwards (swept) and rotated (pitched) continuously with
considerable change of the angle of attack. At the end of the downstroke, the wing is twisted
rapidly, so that the leading edge points backwards and the upstroke begins. During the
upstroke the wing is pushed upwards and backwards and rotated again, which changes the
angle of attack throughout this motion. At the highest point, the wing is twisted again, so
that the leading edge points forward and the next downstroke begin.

Insect-wing flapping occurs in a stroke plane that generally remains at the same
orientation to the body and is either horizontal or inclined, see Figure 2. In forward flight

Figure 1: Insect-wing flapping is a Periodic Motion and Each Cycle is Composed of the
Downstroke and Upstroke. The Leading Edge Always Leads, Irrespective of
the Direction of Wing Motion: (a) Beginning of Downstroke and (b) Beginning
of Upstroke

Figure 2: Typical Motions of an Insect Wing in Hover. The Insect Body is Orientated
Almost Vertically, While the Wing Tip Traces a Flat Figure of Eight Around
the Stroke Plane. The Stroke Plane is inclined by the Angle   15°. The Dashed
Line Represents the Upstroke nd the Dotted Line Represents the Downstroke;
'H' is the Head, 'T' is the Thorax and 'A' is the Abdomen
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the downstroke lasts longer than the upstroke, because of the need to generate thrust. In
hover they are equal, resulting in the wing-tip tracing a flat figure of eight (as seem from
the insect’s side).

Since each half-cycle starts from rest and comes to a stop, the velocity distribution in
non-uniform. In hover, the motion of the wing tip seems to be adequately described by the
first three harmonics, so does not differ dramatically from a purely sinusoidal motion [13].

2.2 Main Aerodynamic Phenomena in Insect Flight

The kinematics of insect wings makes the analysis of the associated aerodynamics a non-
trivial task, not yet completed, especially in terms of its mathematical description. The
classical approach was based on the quasi-steady assumption that the instantaneous forces
on the flapping wing area equivalent to those for steady motion at the same instantaneous
velocity and angle of attack. However, Ellington in his seminal work [11-16] showed that
this framework is inadequate to explain the high lift generated by insects, especially in
hover (underestimated by a factor of three).

Ellington concluded that unsteady aerodynamics must be involved; however, the nature
of the unsteadiness was not clear. Further difficult experimental work by Ellington et al.,
followed [17, 18] and led to the remarkable discovery of a spiraling leading-edge vortex in
a large insect. This is a bound vortex, its position on the wing remains constant during a
half-cycle, despite the wing’s pitching, plunging and sweeping, while its size fluctuates.
Inside the vertical structure, spanwise flow (along the leading edge, from the wing base to
the tip) was observed, an apparent cause of spiralling out of the vortex. In hover, at the end
of the downstroke the vortex is shed by a sudden wing twist and a new one is created
symmetrically during the upstroke and shed when the wing flips again.

This persisting leading-edge vortex was discovered through three-dimensional flow
visualization for a tethered hawkmoth Manduca sexta [19] and confirmed with a better
resolution on an aerodynamically scaled, large, mechanical model of the hawkmoth [20, 21],
powered by electric servomotors. Recent experiments on a mechanical model of the fruit
fly Drosophila melanogaster wing [9] seem to suggest that a bound leading-edge vortex
also occurs in smaller insects. However, the spanwise spiralling out, detected by Ellington
et al. for the hawkmoth, was not observed.

As explained previously, insect-wing kinematics involve two translational phases (upstroke
and downstroke) and two turning phases (at the end of each half stroke) when the wings
rapidly reverse direction. Dickinson et al., [9] pointed out that the leading-edge vortex is a
plausible translational mechanism. However, contributions to the lift from wing reversal and
the wing’s interaction with the flow pattern of the previous stroke are yet to be explained.
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3. PROPOSED MATHEMATICAL MODELLING

Based on the discussion of insect flight kinematics and aerodynamics in previous section,
the tentative conclusion, adopted here, is that the main likely aerodynamic phenomena
occurring in insect flapping are:

(i) bound leading-edge vortex, persisting during each half-cycle and shed at the end
of it,

(ii) effects (other than the vortex) of wing pitching, plunging and sweeping present all
the time, and

(iii) wing interaction with its own convected wake (caused by previous wingbeats) due
to its forward-backward sweeping (re-entering the wake).

The flow is assumed incompressible, of low Reynolds number and laminar, while the
wing is treated as rigid, thin and of symmetrical section. These postulates have good support
in experimental observation of insect flight, with the exception of wing rigidity. Because
the flow is laminar, it is susceptible to separation and it is hypothesized here that insects
deliberately provoke separation at the leading edge to exploit the vertical lift thus obtained.
It is also postulated that no further separation occurs during each half-cycle and that the
vortex is shed at the end of it, due to a sudden wing flip. Hence, we will focus to interpret
phenomenon (i) as accounting for the separated part of the flow, while treating (ii) as
responsible for the attached part of the flow interacting with (iii), no interaction between (i)
and (iii).

The vortical lift due to (i) is interpreted as essentially identical to the leading-edge vortex
on sharp-edged delta wings. It should be emphasized that it is a nonlinear phenomenon [22],
because of the interaction of viscosity and the velocity field which result in separation of the
boundary layer and rolling up of the separated vortex sheet into a spiral vortex. In every half-
cycle on insect flapping, � (the angle of attack) increases continually well above 20° and the
leading-edge vortex is still bound. This is because separation occurs at the beginning of the
motion and keeps generating stable vortical lift throughout the half-cycle of the motion. Over
a half-cycle, it is not a transient phenomenon leading to a catastrophic loss of lift. Moreover,
this controlled separation is localized at the leading edge and occurs nowhere else on the
wing, so that the rest of the wing flow is attached. Therefore, it seems plausible to assume that
the classical unsteady thin aerofoil theory can be used to interpret (ii), interacting with (iii),
despite the large angles of attack involved. However, wake distortion may be present and
care must be taken to include such effects when describing the interaction.

The non-vortical part of the flow will be treated using the unsteady aerodynamics
methods for helicopter blades in attached flow. Due to the flow attachment, this theory is
linear and inviscid (with the Kutta condition imposed on the trailing edge). This means that



184 Moosarreza, Shamsyeh Zahedi & Mir Yaseen Ali Khan

the contributions of each type of the motion and the interaction with the wake can be
treated separately and then superimposed.

On the other hand, the bound leading-edge vortex is a nonlinear phenomenon and will
be treated as such. Special methods, different from thin aerofoil theory, must be used,
because of the viscous character of the vertical structure. The computed contribution of the
vortex will provide a nonlinear correction to the inviscid results for pitching, plunging and
sweeping motions. In this way, the whole flow can be handled with transparent interpretation
of its components and analytic formulae for each of them. One actual realization of the
above programme is sketched below.

It should be mentioned that some of the analytical tools used below were alluded to by
Ellington in his seminal work from 1984 [11], and also in his more recent work [6, 21].
Similar hints can also be found in [23].

3.1 Circulation and Induced Velocity

The methodology outlined here is a generalization of the classical, linear, thin aerofoil
theory to unsteady wing motion. This theory assumes a wing of negligible thickness and
camber which are valid for most standard wings at small angles of attack. Insect wings are
made of round spars spanned by a membrane whose thickness is much smaller than the
diameter of the spars. In fact, they can be reasonably approximated by a thin flat plate with
a cylinder at the leading edge, acting as a trip.

In the developments below the following convention will be used. Let the aerofoil
chord length be c and the semi-chord b = c /2. The origin of the reference line is placed at
the mid-point of the chord, so that the leading edge is given by x = –b and the trailing edge
by x = b. Finally, the right-hand rule convention is followed for both the vorticity and the
circulation, as in McCune & Tavares (1993); this is different from von Karaman & Sears
(1938).

In the steady theory the camber line is replaced by a line of vorticity which varies along
the aerofoil, but not in time. This is expressed by the dependence of the chordwise vorticity
distribution �a on the coordinate x along the reference line, but not the time t, i.e. �a = �a (x)
with – b � x � b. Hence, the total circulation about the chord is the sum of the vortex
elements

�a = ( )
b

ab
z dz

�
�� (3.1)

and is constant both in space and time. The induced velocity at point on the aerofoil is
given by
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v (x) = 
( )1

2

b a
b

z
dz

z x�

�
� �� . (3.2)

3.2 Von Karman-Sears Theory and Its Nonlinear Extentions

An important consequence of aerofoil motion is the presence of vorticity in the wake and
its influence on the aerofoil vorticity. For unsteady flow [24, 25] both the vorticity distribution
bound to the aerofoil �a and its wake counterpart �w are time-varying, i.e.  �a = �a (x, t) with
– b � x � b, and �w = �w (x, t) with  b x � R(t), where R = R(t) is a time-varying wake extent.
The wake is interpreted as arising due to the aerofoil’s motion, which results in shedding
the aerofoil’s line of vorticity from the trailing edge. The unsteady Kutta condition at the
trailing edge is

�a (b, t) � 0, (3.3)

which is shorthand for �a (b, t) � 0 all t. Since the flow is assumed inviscid, the total circulation
of the aerofoil-wake system must be equal to its initial value � = const. This means that the
point vortices of the aerofoil and the wake must form vortex pairs, so that the computation
of �a and �w is interdependent. In other words, vorticity in the wake influences aerofoil
vorticity and hence its circulation.

The total circulation about the chord will now be time-varying, �a = �a (t), and so will
be the induced vorticity at point x on the aerofoil:

v (x, t) = 
( )( , ) ( , )1 1

2 2

b R ta w
b b

z t z t
dz dz

z x z x�

� �
�

� � � �� � (3.4)

Where the wake influence is expressed by the second term, see equation (3.2).

Thus, the vorticity distribution bound to the aerofoil �a will be a superposition of two
contributions:

�a (x, t) = �0 (x, t) + �1 (x, t) (3.5)

(The superposition expresses linearity of the theory.) Here �0 is the quasi-steady part (existing
when no wake is present) and �1 is induced by the wake. The total circulation of the aerofoil-
wake system must be zero, so that

�a (t) + �w (t) = � = const (3.6)

where

�a (t) = �0 (t) + �1 (t) (3.7)
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see equation (3.5). In the right-hand side of (3.7),

�0(t) = 0 ( , )
b

b
z t dz

�
�� (3.8)

where �0 is obtained by considering for each t the corresponding steady flow in the absence
of the wake, see equation (3.1), and

�1(t) = 
( )

( , ) 1
R t

wb

z b
z t dz

z b

� ��
� �� �� ��� �

� (3.9)

Finally, the wake circulation is simply

�w(t) = 
( )

( , )
R t

wb
z t dz�� (3.10)

Collecting equations (3.6)-(3.10) yields the linear integral equation [26]

0 ( , )
b

b
z t dz

�
� � ��  = 

( )
( , )

R t

wb

z b
z t dz

z b
�

�
�� (3.11)

For a specified unsteady motion and initial conditions, the left-hand side of (3.11) is readily
computed, so that the problem reduces to finding the wake vorticity distribution �w(x, t) on
b < x � R(t), consistent with (3.11).

The above reasoning yields a transparent formula for unsteady lift,

L(t) = L0(t) + L1(t) + L2(t) (3.12)

Where, with V = V(t) being the time-varying incident velocity accounting for wing
sweeping [25],

L0(t) = – �V (t) �0(t) (3.13)

L1(t) = � �0 ( , )
b

b

d
z z t dz

dt �
� �� (3.14)

L2(t) = 
( )

2 2

( , )
( )

R t w
b

z td
V t b dz

dt z b

�
��

�
� (3.15)

Here the right-hand rule convention for the circulation was used, as [27].The term L0,
given by equation (3.13), is the quasi-steady contribution (see equation (3.8)). Equation
(3.14) for L1 expresses the apparent mass contribution and does not depend on the incident
velocity V, unlike L0 and L2. This term exists even if the aerofoil executes its motion without
producing circulation, i.e. when for all t there is no quasi-steady lift, �0(x, t) = 0, and no
wake, �w(x, t) = 0. (Note that �0(x, t) = 0 for all t does not nullify L1, because the integral in
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(3.14) is differentiated with respect to t). This non-circulatory contribution is due to the
inertia of the fluid accelerated by the aerofoil motion and is computed from the unsteady
Bernoulli equation [28]. It is interesting to note that it is possible that during certain phases
of the wing motion its lift is increased by L1, corresponding to extraction of the energy
from the flow (due to the reaction of the surrounding fluid). This would give support to the
view expressed by Ennos that in flies the kinematics is helped by aerodynamics [29], the
motion need not be forced all the time. Indeed, the corresponding aerodynamic moment is

M1 = � �2 2
0 ( , )( /2)

2
b

b

d
z t dzz b

dt �

�
��� (3.16)

and acts at the quarter chord [26].

Finally, the term L2, given by (3.15), is the wake-induced contribution. In particular, if
the aerofoil experiences an impulsive start, then no fluid mass is accelerated yet, so L1 = 0.
However, the wing does not immediately attain its full steady value, which would be
expressed by L0 alone. This gradual lift increase is precisely the influence of the wake and
is a result of the vortex pairs mentioned at the beginning of this section. It also gives a clear
interpretation of the existenceof the starting vortex in impulsive motion, also known as the
Wagner effect [30].

If this general theory is applied to an aerofoil in pitching or plunging oscillations, or
starting (stopping) impulsively, or entering a gust, the integrals can be evaluated in closed
form [25]. Since the theory is linear, any superposition of these is also allowed. Hence, this
approach can handle insect flapping kinematics (including the wing starting and stopping)
if wing interaction with its own convected wake is interpreted as a gust encounter [25]; the
pressure distribution can also be computed [31]. Thus, analytic formulae for the non-vortical
part of the flow can be obtained, provided the wake is planar and moves at the incident
velocity V.

McCune et al., [32] proposed an extension of the von Karaman-sears linear theory to
the situation when the wake can be deformed and rolled up, while maintaining the
transparency and spirit of the classical approach. In essence, it is a nonlinear version of
integral equation (3.11), so that a more involved wake influence can be accounted for. In
terms of lift the new formula is

L(t) = L0
n(t) + L1

n(t) + L2
n(t) + L

—
(t) (3.17)

Where the first three terms correspond conceptually to L0, L1 and L2 in (3.12) and their
actual expressions [27] do not differ much from (3.13)-(3.15). However, the term L

—
 is new

and is a nonlinear correction which vanishes if the linear theory assumptions are restored.
It is also given by a simple integral expression, but cannot be evaluated in closed form.
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Instead, it must be integrated numerically, which poses no real algorithmic difficulties and
can be done quickly [32].

McCune’s nonlinear generalization of the von Karman-sears approach enabled Tavares
[33] to apply a similar approach to a delta wing in unsteady motion. In particular, he was
able to analyse the leading-edge vortex contribution. This opens a way to accountfor the
vortical part of the flow in insect flapping. Thus, the circulation approach, based on the von
Karman-Sears linear theory and its nonlinear extensions due to McCune and Tavares, offers
a coherent, insightful and mathematically tractable method ofthe flow analysis. The formulae
involved are either in closed form or require simple numerical evaluation; the latter can be
done quickly and efficiently.

4. FURTHER REMARKS AND CONCLUSIONSG

The model described above is valid under the assumption of wing rigidity. However, in
insects aeroelasticity is significant, as can be seen from photographs [34]. In fact, their
remarkable manoeuvrability is enabled by active control of the three-dimensional shape of
the wings during the beat cycle. This is achieved by deformability of the wings; the observed
patterns of deformation (both active and passive) include torsion, camber change and
transverse bending.

In principle, if for a wing element at a point x the corresponding time-varying (unsteady)
aerodynamic loading F is available (see, for example, Theodorsen’s formula for lift [36]),
then the generic equation

mx.. + cx. + kx = F (x, x., x.., t) (4.1)

Should account for the structural response and its influence on the loading. This is because
x appears on both sides of equation (4.1), so that there is constant feedback between the
inertia mx.., damping cx., elasticity kx and theaerodynamic force F (x, x., x.., t). However, for
large deformations (observed in insects) the parameters may depend on x and/or x., so that
equation (4.1) is no longer linear. Even if it is, then obtaining realistic values for m, c and k
may be difficult experimentally. However, when accurate measurements of x, x. and x.. are
available and F (x, x., x.., t) is known, then finding parameters m, c and k is a standard estimation
problem [36]. This is because the left-hand side of (4.1) is linear in these parameters, so the
linear least-squares framework is applicable.

Design and construction of flapping MAVs inspired by flying insects is a nontrivial
task, further complicated by the lack of in-depth physical and mathematical understanding
of insect flight. Progress in fundamental analysis is unlikely to be quick, if only because of
considerable experimental difficulties in investigation of insects in free flight. However, it
is possible to move forward in the engineering design by adopting a plausible, analytic
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framework and this was the main motivation for this paper.The history of aeronautics, and
in particular of helicopter technology [35], gives some credence to this approach. When
faced with cumbersome complexity, the engineer has to simplify judiciously and his design
is then a spur to further fundamental analyses, which, in turn, lead to valuable insights
producing a better design.

It should be emphasized that despite the impressive progress in the insect aerodynamics
research, must remains to be done. Especially needed are accurate kinematic data and
instantaneous force measurements on the whole wing. These would have to be done ona
multipoint grid to provide a field of positions, velocities and accelerations (forces), as opposed
to the observations of the wing tip and mean forces at a single point. Finally, the data available
so far come either from tethered insects (when they donot fly naturally) and/or approximate
mechanical models and thus cannot be considered definitive. Detailed information from free-
flying insects would be ideal but is very difficult to obtain experimentally.

For insect-like flapping-wing MAVs, both the analysis from first principles and the
synthesis of workable prototypes should go together. In this paper, we have tried to show,
for the example of mathematical/aerodynamic modelling, that there is a considerable body
of engineering knowledge this process can draw upon in a systematic and transparent way.
Verification of the proposed method is currently in progress.
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