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Abstract:  An effi cient and effective way to construct trust relationship among peer users in e-learning environment 
is ranking. User-driven reputation systems are based only on the feedback or ratings provided by the users. Users 
with higher points obtain high rating compared to less scored users. Thus, by Zipf’s law, alleged low users are 
pushed to the bottom of the ranking list. This condition is avoided by encouraging less reputed users and preventing 
them from moving further down in ranking level. Thus, low ranked users are provided with few more chances to 
participate actively in the e-learning environment.  A splay tree is a Binary Search Tree with self-balancing skill. 
The splay tree brings the recently accessed item to the top of the tree. A splay tree is used to represent user’s ranks, 
and to semi-splay low ranked users again in the tree thus preventing them from further drowning in the ranking 
list for the ‘n’ number of times. In this paper, we presented re-ranking algorithm to enhance average scored users, 
and our algorithm is compared with a ranking algorithm in the existing Question-Answering websites. Bayesian 
approximation is to predict the ranking vector of a user before re-ranking.
Keywords:  User-driven reputation system, Splay tree in ranking, Re-Ranking algorithm, Zipf’s law, Collaborative 
learning, Bayesian approximation method.

1. INTRODUCTION
Privacy and protection rights are the key challenges that are needed to tackle when capturing and using contextual 
data. Content driven reputation systems are based on the feedback provided by analysis of all interactions 
whereas user-driven reputation systems are based only on the feedback or ratings provided by the users. In 
e-learning environments, co-learners trust relationships play a vital role to establish collaborative activities. For 
collaboration activities in e-learning environments, the trust relationships among co-learners are imperative. An 
individual’s privacy diminishes by expectations of trust [27]. Reputation is an effectual source for measuring 
trust, and it is obtained through rating or ranking. Reputation is a contextual evaluation of a person’s actions 
[27]. The splay tree brings the newly accessed items closer to the top of the tree, thus the recently searched 
items to be accessible in O(1) time if accessed again. The locality of reference states that 80% of the accesses 
are to 20% of the items. A splay tree search operation does the same standard Binary Search Tree (BST) 
searching, additionally, it also moves searched user to the top of the tree. If the search is successful, then that 
user is splayed and becomes the new highest rated user. Else the last user accessed before reaching the NULL 
is splayed and becomes the new highest rated user. The splay tree allows searching and insertion operations to 



762International Journal of Control Theory and Applications

R. Jayashree, A. Christy,  S. Venkatesh and K.Kanmani

balance the tree so that future operations may run faster. Based on the heuristic, if user X is accessed once, then 
same user X is likely to be accessed again. After locating user X, perform “splaying” operations to bring up X 
to the top of the tree. Do this in a way that leaves the tree more or less balanced as a whole. The active (recently 
accessed) user will move towards the root, and inactive users will slowly move far-off from the root. Let user X 
is not a maximum_Ranked _User that is, X has, at least, one ancestor, and then “Zig” and “Zag” are just a single 
rotation, as in an AVL tree right and left rotation respectively [24]. “Zig-Zig”/ “Zag-Zag” consists of two single 
rotations of the same type, and “Zig-Zag”/ “Zag-Zig” consists of two rotations of the opposite type, similar to an 
LR imbalance correction [24]. This guarantees that even if the depths of some nodes get huge, a long sequence 
of O(N) searches does not occur because each search operation causes a rebalance. Stackoverfl ow is a well 
known Question-Answering website that allows registered users to post their questions and to post answers 
to others’ questions [23]. In general, users with good answers are ranked high.  In all Question-Answering 
websites users with the highest reputation scores are marked as highly reputed users. Overall rating depends on 
the ratings of users with low reputation. The higher the vote weight of a user with great reputation compared 
to a vote of a low reputation user, the less the overall reputation will change due to the low reputation votes. In 
this paper, users with the fewer score are shuffl ed for a limited number of times so that they do not get ignored 
in the top reputation list. In other words, moderately reputed or less active users are given few more chances to 
participate actively and thus, postponing them from getting eliminated from top scored list. 

In this paper, reputation-based ranking methods using splay trees are discussed as a signifi cant concept. 
The re-ranking algorithm is developed to prevent weak users from downfall and encourage them by boosting 
their ranks. The paper is organized as follows: Section 2 describes motivation and background, Section 3 
describes searching time of a user and Re-Ranking algorithm. This section also describes how to break Zipf’s 
law by increasing user level in the splay tree using zig or zag rotation. In section 4, we present reputation 
ranking method using Bayesian approximation, Section 5 describes and discusses experimental results and 
fi nally, section 6 concludes and describes future work.

2. MOTIVATION AND BACKGROUND
The quality and quantity of user’s contributions compute their reputations. The good quality contribution 
preserves the introduced changes in subsequent revisions [30, 31, 32]. User status is evaluated to predict the 
quality of future user contributions [30]. The predictive ability of the content reputation system is used to 
measure its performance [27]. The design space characteristics infl uence the structure of a reputation system. D 
Movshovitz described the different experts versus non-experts activity patterns and highlighted the importance 
of detecting anomalous users in his work. The potential expert users are identifi ed based on their business in 
the fi rst few months of activity on the site. An Initial activity of a user when joining the site is indicative of his/
her long-term contribution [29]. Enhancing or reducing the infl uences of the large-degree users could produce 
accurate reputation ranking lists [28]. SChord [1] is based on splay tree and implements Chord fi nger table with 
improved resource locating effi ciency. Nodes hierarchy is related to the access frequency. Routing and caching 
are the two operations in Schord ring[1] where the routing process is to look up the closest preceding node and 
caching is searching and inserting (key, node) to its splay tree. Each node contains a splay tree. Insert node n 
with s successors (n.id + 2i), 0<= i <= s –1 into splay tree[1]. Stefan et al. [2] explored fully decentralized and 
self-adjusting network that minimizes the routing cost between arbitrary communication pairs. They proved by 
the empirical entropies of the sources and destinations that the overall cost is upper bounded. A new content 
authentication scheme proposed by Liangbin et. al, in which Merkle hash tree (MHT) is constructed based on 
an OBST [3]. The basic idea in MHT is to produce a short cryptographic description of a large data set. Parent 
node stores the concatenated children node values. An element is verifi ed using node’s siblings in the path from 
the associated node to the root. An element’s authentication cost depends on the computation time which is a 
linear to node’s depth in MHT.  In [4], Randomized splay tree version is presented with chain splay technique 
for compressing data. An adaptive data compression algorithm called as the splay-prefi x algorithm on the prefi x 
code, where the code tree is restructured using semi-splaying. In semi-splaying technique leaf corresponding to 
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the transmitted symbol is splayed so that it moves halfway to the root, thus moving other symbols automatically 
to the bottom of the tree. Comparing randomized with non-randomized versions based on rotations and time 
proves that randomized algorithm is much smaller than the deterministic text of the algorithm. Randomized 
version [4] achieves up to 3% reduction in the rotations and is preferable for the application of relatively small 
sequences of accesses on a large amount of data. The splay tree is very suitable for caching the recently accessed 
content to provide quick access again. The splay tree has good performance [14] since it is self-optimizing. 
For quick access, move frequently accessed nodes closer to the root. Packets sorted as binary search tree and 
then balanced tree [12] and self-adjusting tree [13, 21] ideas are implemented to design a cache management 
for Content-Centric Networking (CCN) [5]. The download time is related to the class popularity that is, the 
download time is very short for the content with high probability to access. The frequency of visits and the 
recent visit are considered to evaluate the content popularity [5]. Overall packets matching time reduces with 
Splay tree by rejecting unwanted traffi c in early stages and by accepting repeated packets with fewer memory 
accesses [6].  Splay tree changes dynamically according to the fl ow of traffi c and is used to the store length of 
the prefi xes. The level of access determines binary search on prefi x lengths [15].  Statistical Splay Tree Policy 
Filters (SSF-BSPL) [6] optimize the early rejection of unwanted fl ows, and the acceptance of repeated wanted 
traffi c through splaying properties. Filtering processing time for the unwanted packets reduces by arranging 
policy fi elds in descending order starting from the area with the highest rejection statistics. In Splay Tree Packet 
Classifi cation Technique (ST-PC) [7] integer values with their matching rules are stored in splay trees. Whereas 
in Self-Adjusting Binary Search on Prefi x Length (SA-BSPL) [22], the prefi x lengths and their corresponding 
hash tables with matching rules are stored which gives better-amortized analysis. System performance is 
affected signifi cantly by default-deny rule [7] which increases fi ltering processing time. Early packet rejection 
techniques reject the maximum number of packets as soon as possible, thereby fi ltering processing time is 
reduced. Key Insertion and Splay Tree encryption (KIST) [8] algorithms use the splay tree for encryption. Key 
injection algorithm is used to compress the cipher text that moves inner nodes which are higher than specifi ed 
layer. In cloud environment key insertion and splay tree-based outsourcing key management [8] provides an 
approach that is highly secure and fl exible. SplayNet [9] is a distributed generalization of the splay tree where 
frequently communicating nodes are moved closer together. Sleator and Trajan [21] proposed splay tree as 
optimized binary search tree which reduces average access time by moving more popular nodes closer to the 
root. Harper [17] introduced Minimum Linear Arrangement (MLA) problem [16] to design error-correcting 
codes with minimum average absolute errors. The domains such as job scheduling [20] and nervous activity 
in the cortex [19] use MLA concept. Leitao et al. [18] study self-optimizing overlay networks with dynamic 
topology. Chen Avin et al. [9] designed a double splay algorithm to perform splaying in subtrees, Zouheir 
Trabelsi and Safaa Zeidan [10] proposed a mechanism based on multilevel fi ltering modules using the splay 
tree, to optimize fi ltering fi elds order according to traffi c statistics. In this scheme, unwanted traffi cs are rejected 
in the early stages and thus decrease overall packets matching time. Statistical Splay Tree Policy Filters (SSF-
BSPL) [10] system uses a mathematical model to decide statistical policy fi elds order for the next packet 
segment. Learning objects in the repository are ranked based on the citation numbers similar to Google page 
rank [11]. In Slivkins et al.’s [25] work, relevant documents are selected so as to obey the expected relevance 
rate (x), distributed according to a power-law, for each document x.

3. SEARCHING TIME OF A USER IN REPUTATION BASED TREE AND USER ACTIVITY 
BASED TREE 

Splay trees are the self-adjusting tree with amortized time bounds. In this tree frequently accessed users are 
moved towards highly reputed users, Max_Reputed_User. In this rotate-to-Max_Reputed_User strategy, the 
more active users remain close to the Max_Reputed_User and thus can be quickly found. The average cost is 
O(log n). In this paper, two trees are built. One tree t1 is according to user reputation, where highly reputed 
users are close to the Max_Reputed_User. Second tree t2 is according to the active user; thus, the lastly accessed 
user is at the Max_Reputed_User. Searching a user in the splay tree is similar to Binary Search Tree searching.
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Let UserN(Y) be the number of users ranked below the user Y then,
 rank(Y) = log(userN(Y))
Let rank`(Y) be the user Y’s rank before splaying. The time taken for searching a user is proportional to 

the depth of the user Y in t1 and t2 before splaying, that is, the number of links L from Max_Ranked_User to 
user Y. For “m” number of users, searching operations runs in (log m) worst-case time.

3.1. Splay tree in user Ranking 
Searching time of user x in t1 is directly proportional to searching time of user x in t2. If the user x is both active 
and highly reputed, then user x is located approximately at the same level or depth, in both the trees. But in some 
cases, users are more active at the beginning with the highest reputation and then they may become inactive. 
In other cases, though users are active they score destitute status. Calculate the reputation of users with their 
positive or negative votes. As stated in Zipf’s distribution, inactive users may be pushed to more inactive/dead 
state and poorly reputed users to poorest/eliminated state. Avoid this situation by improving the level of users in 
the splay tree, thus proving chances for weak users to become active and to gain more reputation.  Algorithm.1 
fi nds the user x in tree t2 and splays the tree using zig and zag rotations. 

Algorithm 1. Searching Active User X in A Splay Tree
/* If the Max_Reputed_User is x, then there is no need of splaying. If x exists, where x is not a Max_

Reputed_User, then x is splayed to the Max_Reputed_User of the tree. If x does not exist then the last node 
along the search path for the user x is splayed to the Max_Reputed_User. */

SplayLookup_Active_users(User x)
if x is Max_Reputed_User  then return  /* do nothing since the accessed node is already Max_Reputed_User*/
if x =  Max_Reputed_User_Left | Max_Reputed_User_Right then ZIG rotation
p = x_ predecessor
if p_left = x &  p_predecessor_left = p | p_right = x & p_predecessor_right = p then
Zig-Zig | Zag-Zag rotation 
if p_left = x &  p_predecessor_right = p | p_right = x & p_predecessor_left = p then 
Zig-Zag | Zag-Zig rotation 

3.2. Breaking Zip’s law
Zipf’s law states that very few users are ranked high, and a large number of users listed at the middle level and 
very huge at the low level.  Zipf’s distribution shows that very low scored elements are massive in numbers, in 
other words, small occurrences are extremely common, whereas signifi cant instances are extremely rare. Predict 
ranking vector of low ranked users using Bayesian approximation before re-ranking that user. In other words, 
Bayesian approximation method is to fi nd out low ranked users with good ranking vector. Thus, re-ranking 
these users improve their future ranking. To boost up low ranked users, rotate ranks so that those users’ are 
taken up two steps forward in ranking. Below algorithm improves the weak user position in active_user tree by 
rotating the tree assuming that user’s parent as the root. Let t1 and t2 be the splayed tree, where keys are ordered 
according to the user activity value and user reputation value respectively. The grace_upper and grace_lower 
are the upper and lower levels in the ranking tree with constant values. The grace_depth is the range between 
grace_upper and grace_lower. The tolerate_factor represent the number of times to do ZIG operation to improve 
a weak user’s rank. The tolerate_factor depends on the rank of the user in t1 (pos1) and t2 (pos2). 
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1. If pos1 is in between grace_upper and grace_lower values then calculate ‘mean’ value of grace_
upper and grace_lower. 

2. If pos1 is lesser than mean value and pos2 is lesser than grace_lower then the tolerate_factor is the 
max_tolerate_factor. 

3. If pos1 is lesser than mean value and pos2 is greater than grace_lower then tolerate_factor is mid_
tolerate_factor. 

4. Otherwise, tolerate_factor is min_tolerate_factor. 

Let us consider max_tolerate_factor = 3, mid_tolerate_factor = 2 and min_tolerate_factor = 1in our 
Improving Weak User Ranking algorithm. Increase the ranking of a user by doing an additional splay operation, 
as shown in the Fig.1, considering user x’s parent as a maximum ranked user with subtree.

Algorithm 2. Improving Weak User Ranking 
Rank_Improvment(user x)
//tolerate factor is the number of times to rotate the x.  To calculate the tolerate factor for the x using 

grace_upper and grace_lower values. 
pos1 = Searching In Splay(t1, x);
pos2 = Searching In BST(t2, x);
int tolarate_factor = 0, maxtf = 3,
midtf = 2,
mintf = 1;
//grace_upper is the upper limit and grace_lower is the lower limit of the ranks
int grace_upper, grace_lower;     
if(pos1 > =  grace_lower && pos1 <= grace_upper)
{  int mean =  (grace_upper + grace_lower)/2;
if(pos1<=mean && p2 <= grace_lower) 
tolarate_factor=maxtf;
if(pos1<=mean && p2 > grace_lower ) 
tolarate_factor=midtf;
if(pos1>mean) 
tolarate_factor=mintf;
}
a[i] = x;// store x in the weak user list
i ++;
for(int j = 0;  j < i ; j ++)
{if(a[ j] == x)
countme++; //countme counts the number of times the element appears in weak user list
if(countme>tolerate_factor)
println(“The element cannot be rotated anymore”);
else 
{// Move parent below child, and one of child’s children below parent.
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//zig(t1, parent_of_x, x)
if (parent_of_x.left() == x) {
parent_of_x.setLeft(x.right());
x.setRight(p);}
else { parent_of_x.setRight(x.left());
x.setLeft(p);}
}

Figute 1: Zig rotation to increase the ranking of user x

The splay time at a node ‘n’ is proportional to the time to access an item in node ‘n’. Though the size of 
the tree grows as the number of active users’ increases, the depth of the tree is based on the grace_depth value. 
In other words, only when the searching user’s position is within the specifi ed grace_depth, ZIG operation is 
carried out. Search user ‘x’ in t1within grace_depth in a top-down approach and in t2 through inorder traversal.  
The grace_upper represents the maximum level in the splay tree, t1, to consider for searching ‘x’. The maximum 
number of nodes in a binary tree of depth grace_upper is 2 grace_upper−1 where grace_upper  1. The binary 
search tree with 2 grace_upper−1 nodes takes at least O(log (2grace_upper−1)) comparisons to fi nd a particular 
node and the total amortized time for a sequence of m operations is O(m log (2grace_upper−1)).

4. A BAYESIAN APPROXIMATION METHOD FOR REPUTATION/RANKING
According to Bayesian method the observed data (the reputation) and the model parameters are random 
quantities. Let ‘ObsData’ denote the observed data, and ‘unknown’ the unknown quantities of interest. The 
prior distribution P(unknown) and the likelihood P(ObsData \ unknown) determine the joint distribution of 
‘ObsData’ and ‘unknown’. That is,

 P(ObsData, unknown) = P(ObsData \ unknown)P(unknown)
Bayes theorem gives the distribution of ‘unknown’ conditional on ‘obsdata’ as:
 P(unknown \ ObsData) = P(unknown, ObsData)/P(ObsData)
  = P(unknown, ObsData)/ ∫P(unknown, ObsData) n(unknown)
This is the posterior distribution of ‘unknown’, which is useful for estimation. Posterior expectations of 

some functions, f(unknown), express quantities about the posterior distribution. That is,
 Post_exp[f(unknown)\ ObsData] = f(unknown)P(unknown, ObsData) n(unknown) /
   P(unknown, ObsData)  n(unknown)
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The probability P(ObsData) is useful for model selection, which is called as evidence or marginal likelihood 
of the data. The major objects of Bayesian inference are both P(unknown \ ObsData) and P(ObsData). In 
Bayesian re-ranking systems, let the rank of user x be represented as Rx, which is to be estimated. Assuming Rx 
has a prior distribution. At the end of the overall re- ranking calculation, update the ranks by either analytical 
or numerical approximations of the posterior mean and variance of Rx. Next, reputation value is estimated with 
the prior information of these revised mean and variance, and the updating procedure is iterative. The posterior 
mean and variance of R = [R1,…, Rn]

T characterise the re-ranking calculation. Let the result of a re-ranking 
calculation and standardized quantity of Rx are denoted as Re_Rank and S = [S1,…,Sm]T , where m is the number 
of users. The posterior density  of S given the re-ranking outcome Re_Rank is

 P(s\ Re_Rank) = (cumulative distribution function of a 
   m-variance standard normal distribution)
 (Probability of reputation-ranking outcome i.e., P(Re_Rank \s)).

5. EXPERIMENTAL RESULTS AND DISCUSSIONS
Reputation is a user’s identity that refl ects user’s familiarity with the website, the amount of users’ subject 
knowledge and the level of respect peers have on the user. Sometimes reputation also determines a user’s 
privileges within the system. Gaining more reputation and trust can make a user access bestow new functionality. 
As user gain reputation, they gain abilities and responsibilities. The primary factors that determine reputation 
is users’ voting. Posts which are voted up increases users’ status, the reverse is true for posts which are voted 
down. Users’ up-votes are more heavily weighted than down-votes. Reputation lost from the reputation cap is 
not awarded on the following days in the Question-Answering websites such as StackOverfl ow. Reputation cap 
is to prevent users from gaining privileges and trust too quickly. StackOverfl ow badges are similar to ranking, 
awarded to users for achieving an individual score in a specifi c tag. Tag score is the combined total number of 
upvotes and downvotes accumulated on answers under that particular tag. Tumbleweed badge in StackOverfl ow 
is to bring attention to a neglected user and thus encourages people to stay on the website. Our Re-Ranking
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Figure  2: Splay tree of StackOverfl ow users’ reputation values (a) Zig rotation of user M 
(b) After Zig rotaion of user M

algorithm is much similar to the tumbleweed badge, but neglected users’ ranking is increased unknowingly to 
other users/voters. Data are collected from the StackOverfl ow website as shown in the below table with User 
Id, Reputations, Latest answered/questioned time and level. Bayesian Approximation method predicts user 
M’s ranking vector is in upward. Thus, User M is rotated in Figure.2 (a) and pushed forward to level 7 from 
9. In Figure.2 (b), after rotation, M is at level 5. This concludes that a participant becomes more active after 
increasing her ranking status.

Table 1
Data collected from StackOverfl ow website

User 
ID

Reputa-
tion 1

Level 
in tree 

1

Reputa-
tion 2

Level 
in tree 

2

Reputa-
tion 3

Level 
in tree 

3

Reputa-
tion 4

Level 
in tree 

4

Reputation  
after Zig 
rotation

Level in tree 
after Zig 
rotation

A 111 4 111 1 112 3 11 6 112 7

B 28 5 28 4 28 6 28 8 28 10

C 3232 6 323,2 2 3234 2 3235 1 3235 3

D 223,6 12 2236 9 2237 6 2237 4 2238 5

E 82,5 9 825 8 825 7 825 8 826 4

F 11 2 11 4 12 5 12A 9 12 10

G 12A 5 12A 5 12A 6 12 9 12 3

H 1635 8 1635 7 1636 4 1636 6 1636 6

I 2450 11 2450 7 2451 7 2451 5 2451 6
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User 
ID

Reputa-
tion 1

Level 
in tree 

1

Reputa-
tion 2

Level 
in tree 

2

Reputa-
tion 3

Level 
in tree 

3

Reputa-
tion 4

Level 
in tree 

4

Reputation  
after Zig 
rotation

Level in tree 
after Zig 
rotation

J 1822 10 1822 8 1823 1 1823 4 1823 2

K 3421 5 3422 4 3422 3 3422 2 3423 4

L 2735 12 2735 8 2735 3 2737 3 2735 4

M 420 3 421 4 422 4 423 9 424 5

N 17 4 17 3 17 5 17 10 17 9

O 1297 5 1297 6 1298 8 1298 10 1298 5

P 567 8 568 9 568 6 568 10 569 6

Q 17 6 17 6 17 5 17 7 17 5

R 959 7 959 9 959 9 959 11 959 6

S 1348 4 1349 5 1350 3 1350 7 1350 4

T 2079 11 2079 9 2080 4 2080 3 2081 1

U 2149 10 2149 8 2150 5 2150 2 2150 2

V 36 2 37 2 37 4 37 7 37 8

W 65 5 66 3 67 5 67 8 67 9

X 371 4 371 5 372 2 372 5 372 6

Y 1445 7 1445 8 1446 5 1446 8 1446 7

In our work, the Re-Ranking algorithm is implemented in Java using NetBeans and it is compared with the 
existing Question-Answering ranking algorithm. Find weak users and boost up their levels. The implementation 
results show that the poor users are saved from further drowning to the lower level of the splay trees and their 
weakness, such as less active or low score, is identifi ed. Boosting up of participants’ degree in the splay tree 
yields them the chances to get active. Thus, these users may become active again. In the traditional ranking 
methods, the weak participants are not in the limelight, and results in high ranked members alone to grab voter’s 
attention, and thus, only those groups of participants alone remain in the top level of the ranking lists, that is, in 
the ranking cap. Re-Ranking algorithm overcomes this and breaks zipf’s or power law. The studied statistical 
data of StackOverfl ow from the tail of top 50 weekly ranked users’ list conclude that nearly 75% of users’ 
weekly ranks drop down to the lower levels. Users ranked 35, and above are in the critical place of dropping 
steep into the ranking list. Figure.3(a) show StackOverfl ow users’ weekly rank report for the months January 
and February 2016.

The above fi gure clearly proves Zipf’s law, that is, if users obtain low reputation or ranking they fall steep 
into the ranking list. Consider grace_lower as 35 and grace_upper as 45. The users in grace_depth are zig-zig 
or zag-zag rotated as they are the left or right child of their parents respectively. So that they can be moved two 
levels high from their current position, just above their parent node, thus preventing them from dropping steep 
into the list for a limited number of times as shown in the Figure.3(b) If user ‘x’ is within the grace_depth then 
the user is zig/zag rotated. Thus, her parent ‘y’ becomes her child in the splay tree. Though the rank changes, 
the parent’s reputation, and trust values remain unchanged, thus, the chances of losing up-votes and voters trust 
are very less. In other words, the probability of ‘y’ to get pushed down in the ranking list is very less. Now, 
user y’s expected reputation value in the next move becomes x’s expected reputation value. Trust_value is a 
constant value which represents voters trust on users based on their status. Rotated weak users’ weekly rank is 
determined by 
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( )a

( )b

Figure 3: (a) StackOverfl ow users’ weekly rank from Jan to Feb ’16 before applying Rank_Improvement algorithm 
(b) StackOverfl ow users’ weekly rank from Jan to Feb ’16 after applying Rank_Improvement algorithm

Expected_Reputation_After_Rotation - ((Trust_Value_For_Ranks * Reputation_Change)/) where  is 
a constant.

The experimental results show that our algorithm has increased weak user performance by increasing their 
chances to remain in the ranking cap. In our work, 85% of users are made to retain in higher ranks which are 
almost 60% more than the existing question-answering website.
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6. CONCLUSION AND FUTURE WORK
Collaboration activities in e-learning environment require trust relationships among co-learners that obtained 
through reputation and ranking. The splay tree is a self-adjusting binary search tree where highly active/ranked 
users are near the root node. In our paper, the splay tree is used to represent user reputation. And users are 
arranged in the splay tree based on their ranks. Highly rated user occupies the root node. When users are in 
grace_level, then that indicates they are in the critical level of getting ignored or losing the trust of voters.  
Identify low ranked users with positive ranking vector using Bayesian approximation method. Thus, to save 
them from getting very low ranks, zig/zag rotation is done which raised their grade levels. In our work, we 
examined existing StackOverfl ow data in our Re-Ranking algorithm. This result shows that 60% of users saved 
from drowning.  In our future activities, users are grouped based on the subject of expertise and are ranked 
accordingly using multiple splay trees. One user may have more than one subject of interest. Thus, a user can 
be represented as a node in more than one splay tree. These users connect the splay trees forming a splaynet. 
Ranking in splaynet is our future goal. 
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