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A Ten-Term Novel 4-D Hyperchaotic System
with Three Quadratic Nonlinearities and its
Control
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ABSTRACT

First, this paper introduces a ten-term novel 4-D hyperchaotic system and discusses its qualitative properties. The
proposed system is a ten-term novel polynomial hyperchaotic system with three quadratic nonlinearities. The novel
hyperchaotic system has three unstable equilibria. The Lyapunov exponents of the novel hyperchaotic system are
obtained as L =2.2848, L, =0.1437, L, = 0 and L, = —24.3318. The maximal Lyapunov exponent (MLE) for the
novel hyperchaotic system is obtained as L, = 2.2848 and Lyapunov dimension as D, = 3.0998. Next, we derive a
new result for the adaptive controller to globally stabilize the novel hyperchaotic system with unknown parameters.
The adaptive control result has been established using adaptive control theory and Lyapunov stability theory.
Numerical simulations with MATLAB have been shown to illustrate the phase portraits of the novel 4-D hyperchaotic
system and the adaptive control results for the hyperchaotic system.
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1. INTRODUCTION

A chaotic system is commonly defined as a nonlinear dissipative dynamical system that is highly sensitive
to even small perturbations in its initial conditions [1]. The Lyapunov exponent of a dynamical system is a
quantitative measure that characterizes the rate of separation of infinitesimally close trajectories of the
system. A chaotic system is also defined as a dynamical system having at least one positive Lyapunov
exponent. In the last four decades, many chaotic systems have been found such as Lorenz system [2],
Rossler system [3], Shimizu-Morioka system [4], Shaw system [5], Chen system [6], Lii system [7], Chen-
Lee system [8], Cai system [9], Tigan system [10], Li system [ 11], Sundarapandian-Pehlivan system [12], etc.

A hyperchaotic systemis a chaotic system having more than one Lyapunov exponent. For continuous-
time dynamical systems, the minimal dimension for a hyperchaotic system is four. The first hyperchaotic
system was found by Rossler [13]. This was followed by the finding of many hyperchaotic systems such as
hyperchaotic Lorenz system [14], hyperchaotic Lii system [15], hyperchaotic Chen system [16], hyperchaotic
Wang system [17], etc. Hyperchaotic systems have attractive features like high security, high capacity and
high efficiency and they find miscellaneous applications in several areas like neural networks [18-20],
oscillators [21-22], circuits [23-26], secure communication [27-28], encryption [29], synchronization [30-
35], etc.

The problem of control of a chaotic system is to find a state feedback control law to stabilize a chaotic
system around its unstable equilibrium [36-37]. Some popular methods for chaos control are active control
[38-39], adaptive control [40-43], sliding mode control [44], etc.

In this paper, we have proposed a ten-term novel 4-D hyperchaotic system with three quadratic
nonlinearities. We establish that the novel hyperchaotic system has three unstable equilibria. The Lyapunov
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exponents of the novel hyperchaotic system are obtained as L, = 2.2848, L, = 0.1437, L, = 0 and
L, =—24.3318. The maximal Lyapunov exponent (MLE) for the novel hyperchaotic system is obtained as
L,=2.2848 and Lyapunov dimensionas D, =3.0998. Next, we derive a new result for the adaptive controller
to globally stabilize the novel hyperchaotic system with unknown parameters. The adaptive control result
has been established using adaptive control theory and Lyapunov stability theory.

The rest of this paper is organized as follows. Section 2 contains the description of the ten-term novel
4-D hyperchaotic system proposed in this paper. Section 3 contains the qualitative properties of the novel
hyperchaotic system. This section details important properties such as symmetry, invariance, dissipativity,
equilibrium points and their stability nature, Lyapunov exponents and Lyapunov dimension of the novel
hyperchaotic system. Section 4 contains the adaptive control results for the novel hyperchaotic system with
unknown parameters. MATLAB simulations have been provided to illustrate all the main results obtained
in this paper.

2. ATEN-TERM NOVEL 4-D HYPERCHAOTIC SYSTEM

In this section, we describe a ten-term novel 4-D hyperchaotic system with three quadratic nonlinearities.

The novel 4-D hyperchaotic system is modeled by

X =a% = X)+ %X

X =CX = XX +X,
X, = XX, —bx (1)
X, =—d(X +X,)

where X, X, X, X, are the state variables and &, b, ¢, d are constant, positive, parameters of the system.

The system (1) exhibits a strange hyperchaotic attractor when the constant parameter values are chosen

as
a=39, b=4, c=21, d=2 )
For numerical simulations, we take the initial values as
X(0)=1.5,%,(0)=0.4, x(0)=1.8, X(0)=2.5 3)

Figures 1-4 give the 3-D view of the strange hyperchaotic attractor in (X, X,, X;), (X, X, X,), (X, X;,X,)

and (X,,X;,X,) spaces, respectively.

3. PROPERTIES OF THE NOVEL HYPER CHAOTIC SYSTEM
(A) Symmetry

The novel 4-D hyperchaotic system (1) is invariant under the coordinates transformation
(X17X29X37X4)_>(_X17_X27X37_X4) (3)
Since the transformation (3) persists for all values of the system parameters, the novel chaotic system
(1) has rotation symmetry about the X.— axis and that any non-trivial trajectory must have a twin trajectory.
(B) Invariance

The x—axis (X, = 0, X, = 0, X, = 0) is invariant for the system (1). Hence, all orbits of the system (1) starting
on the X, — axis stay in the X~ axis for all values of time.
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Figure 1. 3-D View of the Novel Chaotic System in (x,, X,, X,) Space
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Figure 2: 3-D View of the Novel Chaotic Systemin (x,, X,, X,) Space
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Figure 3: 3-D View of the Novel Chaotic Systemin (x,, X,, X,) Space

30

X

3 0 -30 X

Figure 4. 3-D View of the Novel Chaotic System in (x,, X,, X,) Space



A Ten-Term Novel 4-D Hyperchaotic System with Three Quadratic Nonlinearities and its Control 101

(C) Dissipativity

We write the system (1) in vector notation as

f(3) 4)

where

f,() =a(x, —x)+ XX

fz(x) =CX = XX X,

f,(X) = x %, —bx (5)
f,(x)=—d(x +X,)

The divergence of the vector field f on R* is obtained as

div f za—fl+a—f2+a—f3+%=—(a—c+b)=—,u, (6)
OX, OX, 0% OX,

where
p=a-c+b (7)
We take the parameter values as
a=39, b=4, c=21, d=2 (8)
Then
p=a-c+b=39-21+4=22>0. 9)

Let Q be any region in R* having a smooth boundary.
Let Q(t) = @ (Q2), where @, is the flow of f. Let V(t) denote the hypervolume of Q(t).

By Liouville’s theorem, it follows that

dVv (t) .
& _ [ (div ) dxx,dxdx, =—u [ dxadxdxdx, =—aV(t) (10)

Q(t) Q(t)

Integrating the linear differential equation (10), we get the solution as
V(1) = V(0) exp (—ut) (1)
From Eq. (11), it follows that the volume V(1) shrinks to zero exponentially as t — .

Thus, the novel hyperchaotic system (1) is dissipative. Hence, the asymptotic motion of the system (1)
settles exponentially onto a set of measure zero, i.€. a strange attractor.

(D) Equilibrium Points

The equilibrium points of the novel hyperchaotic system (1) are obtained by solving the nonlinear
equations
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fi()=a(x —x)+xX =0
f,(X)=0CX% —XX+X, =0
f,(X)=xx, —bx, =0
f,()=—d(x +x)=0

Solving the nonlinear system of equations (12), we obtain three equilibrium points as

E, :(0,0,0,0)

E, : (v2ab,—/2ab, -2a,v/2ab(c - 2a))

E, : (—/2ab,+/2ab, —2a,—/2ab(c-2a))
We take the parameter values as in the hyperchaotic case, Viz

a=39, b=4, c=21, d=2
Using the values (11), we obtain three equilibrium points of the novel chaotic system (1) as

E,:(0,0,0,0)
E, :(17.6635,—17.6635,~78,—1006.82)
E, :(—17.6635,17.6635,-78,1006.82)

The Jacobian matrix of the novel chaotic system (1) is obtained as

-a a+% X 0
I =X c X 1
X % b0
-d -d 0 0

The Jacobian matrix at the equilibrium E is obtained as

-39 39 0 O
0 21 0 1
0 0 40

-2 -2 0 0

The matrix J; has the eigenvalues

A, =-4, A,=-39.0333, A,=0.1918, A, =20.8415
This shows that the equilibrium E is a saddle-point, which is unstable.

The Jacobian matrix at the equilibrium E_ is obtained as

-39 -39  -17.6635 0

3 = JE)= 78 21 17.6635 1
—-17.6635 17.6635 -4 0

-2 -2 0 0

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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The matrix J, has the eigenvalues

A, =-10.0303, 1,=0.0801, A, ,=-6.0249 +38.9565 i (20)
This shows that the equilibrium E is a saddle-focus, which is unstable.

The Jacobian matrix at the equilibrium E, is obtained as

-39 -39 17.6635 0
78 21 —-17.6635 1
J,=J(E)=
17.6635 —17.6635 —4 0 (21)
-2 -2 0 0
The matrix J, has the eigenvalues
A4 =-10.0303, 4, =0.0801, 4, , =-6.0249 £38.9565 i (22)

This shows that the equilibrium E, is a saddle-focus, which is unstable.

Hence, E, E, E, are all unstable equilibrium points, where E_ is a saddle point and E , E, are saddle-
focus points.

(E) Lyapunov Exponents
We take the parameter values of the system (1) as
a=39, b=4, c=21, d=2 (23)
We take the initial state as
X(0)=1.5,%x,(0)=0.4, x(0)=1.8, X(0)=2.5 (24)
The Lyapunov exponents of the system (1) are numerically obtained with MATLAB as
L, =2.2848, L,=0.1437, L, =0, L, =-24.3318 (25)

Eq. (25) shows that the system (1) is hyperchaotic, since it has two positive Lyapunov exponents. Since
the sum of the Lyapunov exponents is negative, the system (1) is a dissipative hyperchaotic system.

Also, the maximal Lyapunov exponent (MLE) of the system (1) is obtained as L, = 2.2848.
The dynamics of the Lyapunov exponents is depicted in Figure 5.

(F) Lyapunov Dimension
The Lyapunov dimension of the hyperchaotic system (1) is determined as

i

2k
D =jrt——34+b0tbth 50908 (26)
L | L, |

J

which is fractional. Thus, the ten-term 4-D system (1) is a dissipative hyperchaotic system with fractional
Lyapunov dimension.

4. ADAPTIVE CONTROL OF THE NOVEL HYPERCHAOTIC SYSTEM

In this section, we derive new results for the adaptive controller to stabilize the unstable novel chaotic
system with unknown parameters for all initial conditions.
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Figure5: Dynamics of the Lyapunov Exponents

Thus, we consider the controlled novel 4-D hyperchaotic system

X =a(X, =X )+ XX +U,
X, =CX, — X X% + X, +U,
X = %%, ~bx, +U, @7
X, =—d(X +X,)+U,
where X, X, X, X, are state variables, a, b, ¢, d are constant, unknown, parameters of the system and

u, U, U, u, are adaptive controls to be designed.

We aim to solve the adaptive control problem by considering the adaptive feedback control law
U == AD =X) = %% —kX
U, ==C(0)X, + X% =X, — kzxz
Uy ==X X, + B(t)X; —k;X, (28)
u, = D(t)(x +%,)—K,X,
where A(t), B(t), C(t), D(t) are estimates for the unknown parameters a, b, ¢, d, respectively, and k , k,, k; are
positive gain constants.

The closed-loop system is obtained by substituting (28) into (27) as

% =(@-AM)(X, —x)-kx

X = (€= C(1)x, — kX,

X, =—(b—B(t)x, —k;X, (29)
X, ==(d=D(®))(X +X,)—K,X,
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To simplify (29), we define the parameter estimation error as

ea(t) =a- A(t)
&()=b-B()
&) =c-C(t) (30)

& (t)=d-D()
Substituting (30) into (29), we obtain

5(1 = ea(xz _Xl)_ klxl

X =6% —KX,

X =—6% — KX (31)
X, =—€ (X% +%)—KX,

Differentiating the parameter estimation error (30) with respect to t, we get

ea(t) = _A(t)
&1 =-B()
&) =-C() (32)
&)= _D(t)

Next, we find an update law for parameter estimates using Lyapunov stability theory.
Consider the quadratic Lyapunov function defined by
1
V (X, %, X%, X,,€,6,,€.,€,) :5(><12 X+ X HE+E +E +ef,), (33)

which is positive definite on R®.

Differentiating V along the trajectories of (31) and (32), we obtain

v :_klx12 —kzxj—k3x32—k4xj +€‘a[X1(X2 —x1)—A]+eD[—x§— B]

+ec[x22—C]+ed [—x4(x1+x2)—D] (34)
In view of (34), we define an update law for the parameter estimates as
A=x(x —x)+ke,
B=-x; +kg,
C=x+ke (35)

D =—x,(X +X,)+ke,

where k, k, K, K, are positive gain constants.

Theorem 1. The novel 4-D hyperchaotic system (27) with unknown system parameters is globally and
exponentially stabilized for all initial conditions by the adaptive control law (28) and the parameter update
law (35), where k, (i = 1, 2,..., 8) are positive constants. All the parameter estimation errors €, €, €, €,
globally and exponentially converge to zero with time.
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Proof. The result is proved using Lyapunov stability theory [45].

We consider the quadratic Lyapunov function V defined by (33), which is a positive definite function on
Re.

Substituting the parameter update law (35) into (34), we obtain \/ as
V=-k) =k - kg -k - kel - kg - kel — ke (36)

which is a negative definite function on R®.

Thus, by Lyapunov stability theory [45], all the states X, X,, X,, X, and the parameter estimation errors
€, €, €, €, globally and exponentially converge to zero with time.

This completes the proof.

Numerical Results
For the novel chaotic system (27), the parameter values are taken as in the chaotic case, iz
a=39, b=4, c=21, d=2 (37)
We take the feedback gains as
k=5fori=1,2,..,8.
The initial values of the chaotic system (27) are taken as

X(0)=2.5, x,(0)=-1.8, x,(0)=-3.5, X,(0)=5.6 (38)
The initial values of the parameter estimates are taken as
A(0) =14, B(0)=27, C(0)=18, D(0)=30 (39)

Figure 6 depicts the time-history of the controlled novel hyperchaotic system.
Figure 7 depicts the time-history of the parameter estimates A(t), B(t), C(t), D(t).
Figure 8 depicts the time-history of the parameter estimation errors € (t), (), (1), e,(1).
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Figure 6: Time-History of the Controlled Novel Hyperchaotic System
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5. CONCLUSIONS

In this paper, we have introduced introduces a ten-term novel 4-D hyperchaotic system with three quadratic
nonlinearities. We have given a detailed qualitative analysis of the proposed system in this paper. The novel
hyperchaotic system has three unstable equilibria. The novel hyperchaotic system has the Lyapunov exponents
givenby L =2.2848, L, =0.1437, L, = 0 and L, =-24.3318. Since the sum of the Lyapunov exponents is
negative, the novel hyperchaotic system is a dissipative system. The maximal Lyapunov exponent (MLE)
for the novel hyperchaotic system is obtained as L, = 2.2848 and Lyapunov dimension as D, = 3.0998. In
this paper, we have derived a new result for the adaptive controller to globally stabilize the novel hyperchaotic
system with unknown parameters. MATLAB simulations have been shown to illustrate the phase portraits
of the novel 4-D hyperchaotic system and the adaptive control results for the novel hyperchaotic system.
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