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Automatic Modulation Classification
using Convolutional Neural Network
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ABSTRACT

With theincreasing demandsin thefield of communication systemsevolved theidea of cognitive radio, thedesign
of an intelligent radio capable of sensing thechanne conditionsand hence deciding the optimal method of connection.
Such systems are designed to operate over different channel conditions with different modulation schemes. A
modulation classifier is an essential module in such systems and this paper proposes one such design based on
convolutional neural networks. The proposed system tries to eval uate the performance of modul ation classification
over 3 different modul ation classes over the Tensor Flow framework.
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1. INTRODUCTION

The recent developments in the field of fabrication technology, signal processing and computer science has
led to great advancesin wireless communication and this has made the electromagnetic spectrum a precious
resource. There exists the need for development of efficient technologies that can optimally make use of
the available spectrum to meet the growing demands. Research in the field of Cognitive Radios (CR)
focuses on the development of reconfigurable radios capable of adapting to channel conditions and thus
ensuring good quality of service irrespective of the dynamic nature of resource availability [1, 2]. Such a
radio senses the channel conditions periodically and decides the optimal mode of communication to be set
up. This should be supported by a system capable of generating data in any required modulation scheme;
and at the receiver side it should have a system which can identify the modulation scheme of the received
data and hence implement the corresponding demodulation algorithm to retrieve back the data. The block
diagram for such areceiver architecture is shown in Fig.1. This need is supported by the developments in
the field of Software Defined Radio which allows implementation of reconfigurable systems in software.
The revolution of Digital Signal Processing replaced many of the conventional signal processing hardware
to simple software modules easily implemented in some processor platform having the required computing
capability. Earlier implementation of signal processing systems involved purely hardware designs which
were to be implemented with high degree of precision to ensure good quality devices. The idea of
implementing digital signal processing algorithms in software is easy to visualize and the capability to use
such implementation in real time devices realy smplified the design and made possible more cheaper and
compact systems. With the multitude of embedded hardware and FPGA platforms available today, many
such systems are now implemented in embedded platforms with a processor interfaced with necessary
peripheralsto formacomplete signal processing systemin itself. The design of previously discussed receiver
can be easily redlized in such a platform. A key component of such intelligent receivers is a modulation
classifier capable of identifying the modulation scheme of the data it receives [3]. A lot of research is still
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Figure 1: Typical receiver architecture

going onin thisfield for the development of arobust system which can operate successfully in the different
scenarios to be practically expected. The primary challenge in this domain is the unpredictable nature of
distortionsintroduced in the original signal asit gets transported over the channel. The channel parameters
are highly time varying and random and hence there exists the need for a system that can identify the
original signal characteristics buried deep in these distortions. This paper proposes a system for modulation
classfication based on the popular deep learning methodology of convolutional neura network implemented
using the Tensor flow framework [4] .With the recent advancements in the field of deep learning [5] ,the
field of neural networks has been heavily explored especially for applicationsin image and speech processing
[6, 7, 8]. All these work have presented more intuition on the field and has made it possible to identify how
the scheme can be applied to newer applications. Frame works like Tensor flow, Torch, Theano etc are
tuned for developing deep learning agorithms and make possible the easy implementation and testing of
such algorithms. (no 5 here) The proposed algorithm has been implemented using the Tensor flow frame
work which comes with an optimized C++ back end providing efficient implementations of many
optimization agorithms and a python APl making the implementation simpler.

Section |1 of the paper discusses popular literature on the topic and presents popular algorithms so far
proposed for modulation classification. The next section details neural networks, convolutional neural
networks and the use of cyclostationary features for modulation classification. Section 111 discusses the
implementation details. The results are presented in the next section and finally the conclusion is drawn in
Section VI.

2. LITERATURE

A brief survey in the field of modulation classification shows that numerous algorithms has been proposed
and tested in this field and they are popularly categorized as either likelihood based methods or feature
based methods [9]. The former class of algorithms takes a probabilistic approach to identify the most
probable modulation scheme from the probability density functions. In this category of methods the
probability density functions of all the expected modulation schemes is used to calculate the probability of
the received signal to be in any of the possible modulation scheme. This probability value is used as the
indicator for prediction. This scheme of methods is shown to give satisfactory performance in high SNR
environments whereas the addition of noise heavily degrades the signal and the probability measure can no
longer serve as areliable measure for robust prediction. Popular likelihood based classification algorithm
includes average likelihood ratio test, generalized likelihood ratio test, hybrid likelihood ratio test and the
quas (average/hybrid) likelihood ratio tests. Panagiotu et al [10, 11] discuses summaries of all the above
mentioned methods and provides comparison among the performance of these algorithms. The second
class of classification methods extracts various featuresfrom the received signal to facilitate the classification.
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Figure 2: General neural network architecture.

This class of methods is based on the observation that signals belonging to different modulation schemes
possess certain unigue features which are prominently distinguishable even in the presence of noise and
other disturbances. There are a lot of works available which examines the classification accuracy with
different features and different classification algorithms. Narendar et al [12] discusses one such method
based on fractional lower order statistics (FLOS ); forth order cumulants were chosen as the feature for
classification and the method is shown to have better performance as compared to the earlier methods in
terms of fidelity to noise and fading conditions. Ahn et al [13] proposes the use of higher order cumulants
and presents a classification algorithm based on gaussian mixture models. The statistical parameters of
modulation signalshave an inherent periodicity; the details of which can be captured inthe spectral correlation
function of these signals. Severadl literature [14, 15] discusses classification algorithms based on these
cyclic cumulants as features.

Neural networks has been extensively applied in avariety of pattern recognition and regression problems
across domains [16]. Earlier, the only reason preventing the use of artificial neural networks in real time
problems was the heavy computational requirements for their optimal performance and the problem is
more or less tackled today with the introduction of platforms with FPGAs and GPUs capable of handling
bigger problemsinasmaller platform[17]. Also thereisplenty of literature discussing variety of applications
where artificial neural network and convolutional neural networks has been successfully applied for
classification problems [18, 19, 20].

3. THEORY
3.1. Neural Network for M odulation Classification

Humans were always fascinated by their own ability to think and make decisions and are readly proud of
this ability. As our demands increase, humans are in need of systems which could think for themselves and
adapt themselves based on experiences as living beings do. It was the attempt to imitate the human brain
that developed the field of neura networks. The whole system can be visualized to have several nodes
interconnected in such a way that they can learn operations they are trained for. In detail, the network
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Figure 3: General convolutional neural network architecture

essentially consists of an input layer and an output layer with any number of optional hidden layers in
between. Each layer consists of nodes (also called neurons) connected to some or all of the nodes of the
next layer by some weights. For examplein Fig. 2 L1 isthe input layer, L4 isoutput layer and L2 and L3 are

the hidden layers. Here, V\I,J-L represents the weight of the net connecting i"" node in layer L to the " nodein

layer L + 1. b_isthe biasapplied to layer L. These weights and biases are responsible for mapping the input
to the output. The output of each node is sum function of the weighted sum of the outputs of all the previous

nodes and the bias of that layer; the weights V\I,J-L being the corresponding net weights . The function acting

on the weighted sum is called the activation function. For instance, in Fig. 2 in layer 2, the output of node
1 can be represented asin Eq.1.

=g Wil +h) )

where g is the activation function. Common choices of activation function includes the sigmoid function,
tanh, RELU(Rectified Linear Unit) etc. The need here is to learn that set of optimal weights and biases
which would produce the correct output for al the inputs available in the training set. The weights and
biases are initialized either randomly or with some apriori information [21, 22, 23] and the network is fed
with one sample test data. The corresponding error in the output is calculated using some chosen loss
function and then the mechanism of back propagation is used to readjust the parameters to decrease errors.
In back propagation, the error in each stage is back calculated starting from the output layers. The error in
each node is then added to the corresponding weights and biases scaled by some learning rate. This makes
it clear that the efficiency of a neural network heavily depends on the proper training and agood training set
can ensure dependable performance from the network.
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According to the above discussed architecture the input to the neural network is expected to be a one
dimensional vector of data points. However, in cases where the datais multi-dimensional (eg. inimages, in
modulationdata (I & Q streams)) it isalways preferred to go for some architecture capable of extracting the
gpatial correlation in data. These features are really critical in identifying the behavior of the data and such
an architectureisused in convolutiona neural networks. A typical convolutional neural network architecture
isshown in Fig. 3.

Here, plane 1 can represent a typica input layer for a convolutional network. The elements of plane 1
are locally processed by the weights and biases and then acted upon by the activation function; al of which
are represented by the circles in Fig.3. This operations result in plane 2 which can be dimension different
from plane 1 depending on whether zero padding was done prior to the convolution operation (filtering
using the weights). Plane 2 may further be down sampled based on some criteriato form plane3 which can
be again be the input to another convolutional layer or another fully connected layer.

This paper proposes a convolutional neural network architecture for modulation signal classification.
The result corresponding to the input being atwo dimensional vector consisting of | & Q stream data, and
also the case for the input data appended with cyclo stationary featuresis studied.

3.2. Cyclostationary features for AMC

Modulation signals belongs to the class of cyclostationary signals; signals whose statistical parameters
exhibits a periodicity [24]. The periodicity of these parameters are not discernible from the power spectral
density of these functions, however there exists some quadratic transformations which can transform these
cyclostationary signalsto signalswithfirst order periodicity [25, 26]. In general, the mean and autocorrelation
function of cyclostationary signals can be expressed asin Eq. 2.

H(t+T) = p, ()
X (+T,7) = x,(t,7)

The spectral correlation function (SCF) of a function captures the correlation between the spectral
components of a signal and are observed to be unique for signals of different behavior. In the case of
modulation signals especialy it has been observed that signals belonging to different modulation schemes
have very different SCF's and thus can effectively be used as features capable of distinguishing between
different modulation schemes[26]. As per Wiener Khinchin theorem for cyclostationary signals, the spectral
correlation function of these signals is the Fourier transform pair of the cyclic auto correlation function
(CAF). Thus the spectral correlation function can be expressed asin Eq. 3.

)

ve(f) = J 2E (D) 3

where the cyclic auto correlation function being periodic can be expressed as the Fourier series expansion
in Eq. 4 with Fourier coefficients given by Eq. 5.

1T =y (1)e*™ (4)
1 Y
‘(D) 2lim= [y e’ dt =
Xx (T) Tow T _1/ X (5)

Also, [27, 28] shows that the SCF can equivalently be derived from the spectral cross correlation, i.e.
the SCF can be estimated from the correlation between two spectrally shifted versions of the original
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Figure 4: Evaluated convolutional neural network architecture.

spectrum. S can be estimated from the correlation of the signal at frequencies alpha apart. Gardner et al

[27] givesthefollowing approximation for SCF from the instantaneousvalue of SCF by applying asmoothing
function as given by Eq. 6.

%

wrey . i L (o o
y/X(f)_AtlvlTrDmA—t_g[yXT(t,f+E)XT(t,f—E)dt ©)
2

From, Eq. 6 The paper compares the accuracy and performance of modulation classification of | & Q
stream data with and without cyclostationary features appended.

4. IMPLEMENTATION DETAILS

A four layer convolutional neural network with two convolutional layers and two fully connected layers
was implemented. Similar networks were already evaluated for classification without features [29]. The
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Figure 5: Confusion matrices for classification without features
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Figure 6: Weightsfor classification featuresat SNR = 10dB
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Figure 7: Confusion matrices for classfication with features

corresponding network with weight dimensions is shown in Fig. 4. Convolutional neural network was
chosen to make use of the relation between the corresponding samplesinthe | & Q streams. Thel & Q
streams were fed into the network as a two dimensional vector in the form of discrete frames each 128
samples wide. Further half of each frame was made overlapping with the previous frame. The first two
convolutional layers implemented 65 and 10 number of filters. The first layer was implemented with a
one dimensional filter and the second with a two dimensional filter. The neural network is expected to
learn these filter weights over the training process such that they extract essential features from the
signal which are capable of distinguishing between the different modulation schemes. The rectified
linear activation function was chosen asthe activation function for these two convolutional layers. Further
the information extracted from these features are used to predict the label corresponding to the data point
by adjusting the weights and biases across the next two fully connected layers, the first implemented
with a rectified linear activation function and the second with a soft max function for activation. The
error function for back propagation was chosen as the difference between the predicted and original
class labels added with regularization parameters to avoid over fitting. Regularization was achieved by
minimizing the |, norm of the weight variables in all layers and the |, norm of the first dense layer. The
optimization function was solved using the Adams method an algorithm for stochastic gradient descent.
Further drop out was done during training to avoid over fitting. The whole network was implemented
and tested on the Tensor flow framework.
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5. RESULTS

The performance of the network wastested on a synthetically generated dataset. | & Q samples corresponding
to three analog modulation schemes: double side band amplitude modulation, single side band modulation
and frequency modulation were generated for two different SNR conditions using the GNU radio platform
[30]. Noise was introduced to the signal using the channel models available here.

5.1. Classification without features

Initially classification of data without any features was tested on data sets at SNR conditions of 16 dB
and 10dB. Fig. 5 shows the resulting confusion matrices after classification was tested on sample | &
Q frames. It shows that the accuracy of classification decreases with increase in noise and there is
more misclassification of single side band modulation as double side band modulation which can be
due to the similarities in the two schemes. Fig. 5a and Fig. 5b shows the layer 1 and layer 2 weights
learned after training data of SNR 16 dB. They show that different filter weights are learned in both
the situations although the exact features captured are not directly discernible. They were both trying
to extract slightly different features from the data. An average classification accuracy of 60 - 62% was
observed.

5.2. Classification with features

The network was then fed with data appended with two rows of features corresponding to the real and
imaginary parts of cyclostationary features extracted from the | stream data of the respective frame.
Fig. 7a and Fig. 7b shows the resulting confusion matrices from classification under SNR conditions
of 16dB and 10dB respectively. Further, Fig. 8a and Fig. 8b shows the layer 1 and layer 2 weights.
Comparing these with the previous case of data without features shows that the filters are slightly
different although the exact features extracted in both the cases are not explicitly discernible from the
figures. Since, the network is now introduced with a different picture of the data, thefilters are expected
to be different as they are looking for different features capable of classifying the data. The confusion
matrices show significant improvement in classification with the addition of featuresto the data frames.
This can be due to the additional features that can be extracted from the frequency domain profile of
these signals. Further, the classification remains better robust under noise conditions because the
cyclostationary features are not too effected by noise. Also, the average classification accuracy was 70
- 72% in these cases.
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Figure 8: Weightsfor classification featuresat SNR = 10dB
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6. CONCLUSION

The proposed convolutional neural network architecture is capable of classification between the three
analog modulation schemes namely double side band amplitude modulation, frequency modulation and
single side band modulation. Further, when the average accuracy of classfication of datawas 61%, it was
found to increase to 71% with the addition of cyclostationary features. The method shows high scope for
research and could be extended to the classification of analog as well as digital modulation schemes.
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