
IJCTA 
Vol.8, No.1, Jan-June 2015, Pp.188-197 
© International Sciences Press, India 
 

 

Mitigation of Switching Losses with 
SHE Modulation Strategy in Grid 
Interfaced PV Inverters 
1C.V. Surya Deep, 2Dr. M. Padma Lalitha, 3 P. Bhaskara Prasad 
M.Tech student1 , Head of the Department2 , Associate Professor3 

Department of Electrical and Electronics Engineering, AITS, Rajampet, Andhra Pradesh, India 
 

ABSTRACT 

Interfacing of multimegawatt photovoltaic inverters with grid is getting a greater attention in recent. It is 
always a challenging task for the engineers as there are certain priorities to be taken while interfacing 
PV cells to grid without which there will be an unsatisfactory operation of the system. However for high 
power and medium voltage grid inverters the priorities like switching losses, satisfaction of grid codes 
and IEEE and IEC standards are  to be strictly considered. Reduction of switching losses is the active 
area of research. In order to meet such requirements we are using the conventional modulation strategy 
like SHE (selective harmonic elimination). This paper focus on the reduction of switching losses with 
the help of new implementation technique for SHE that uses third harmonics to have the switching 
angles over 90o instead in a narrow range by which modulation index is also increased. In order to have 
the potential superiority of SHE over carrier based or space-vector pulsewidth modulation, this SHE 
strategy can allow the grid connected inverters to operate using a switching frequency less than 1KHz 
while it is still able to provide satisfactory operation like simplicity in operation, independent control of 
active and reactive powers which is not possible in other cases. To validate potential benefits of SHE, it 
is compared with THI PWM which is controlled with a operating frequency of 2KHz. 

Index Terms—Grid-connected PV inverters, pulsewidth modulations (PWMs), selective harmonic 
elimination (SHE), switching losses, THI PWM (Third harmonic injection pwm) 

 

1.  INTRODUCTION 

The effectiveness and efficient usage of generated power can be done by 
interfacing the PV cells with the grid. However, the technical aspects both from the 
utility power system grid side and the PV system side need to be satisfactory  to ensure 
the safety of the PV installer and the reliability of the utility grid[1][2]. Clarifying the 
technical requirements for grid interconnection and solving the problems such as 
islanding detection, harmonic distortion requirements, switching losses and 
electromagnetic interference are therefore very important issues for widespread 
application of PV systems. Grid interconnection of PV systems is accomplished through 
the inverter, which convert dc power generated from PV modules to ac power used for 
ordinary power supply to electric equipments. Inverter system is therefore very 
important for grid connected PV systems. 

The developments of flexible ac transmission system devices, medium voltage 
drives, and different types of distributed generations, have provided great 
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opportunities for the implementations of medium- and high-power inverters. In these 
applications, the frequency of the pulse-width modulation (PWM) is often limited by 
switching losses and electromagnetic interferences caused by high dv/dt [3]. Thus, to 
overcome these problems, selective harmonic elimination (SHE)-based optimal pulse 
width modulation (OPWM) are often utilized in both two level inverters and multilevel 
inverters to reduce the switching frequency and the total harmonic distortion. Most gird 
connected PV systems are not apt for the high power due to the usage of higher 
switching frequency (high switching losses and voltage stress).Almost of the studies use 
sinusoidal or space-vector pulsewidth modulation to have control over the inverters. 
The use of sinusoidal strategy doesn’t fully utilize dc link voltage, which lowers power 
density. SVPWM increases semiconductor utilization, dc link voltage and power 
density, but have difficulties while operating in medium voltage distribution systems 
where ac faults and unbalance operations are very high. Hence the need for the use of 
conventional strategy SHE is preferred. Selective harmonic elimination pulse-width 
modulation (SHE-PWM) has been mainly developed for two- and three-level converters 
in order to achieve lower total harmonic distortion (THD) in the voltage output 
waveform.  

 

2.  PULSEWIDTH MODULATION FOR GRID-CONNECTED INVERTERS 

 Many applications such as industrial heating, lighting control and speed control of 
induction motors require variable ac voltage. Generally triacs or anti parallel connected 
thyristors are used as power converters in such systems. These converters which are 
simple ,reliable and cost effective however suffer from various drawbacks such as 
increased harmonic content and poor power factor especially at lower output 
voltages[4][5].  

The method of giving fixed dc input voltage to the inverter and obtaining a 
controlled ac output voltage by adjusting the on-off periods of the inverter components 
is termed as “pulse width modulation”(PWM).The width of the pulse is, however, 
modulated  to obtain inverter output voltage and to reduce its harmonic content. 

          For a multilevel inverter, switching angles at fundamental frequency are obtained 
by solving the selective harmonic elimination equations[6] in such a way that the 
fundamental voltage is obtained as desired and certain lower order harmonics are 
eliminated. As these equations are nonlinear transcendental in nature, there may exist 
simple, multiple or even no solutions for a particular modulation index. This paper uses 
Newton-Raphson method for solving the transcendental equations which produce 
possible solutions with any random initial guess and for any number of levels of 
multilevel inverter. Among multiple solution sets obtained, the solutions which 
produce least THD in the output voltage is chosen [7][8]. As compared with the single 
set of solution, the decrease in the THD can be up to 3% in case of multiple solution sets.  
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 The results show that SHE can be used in the place of carrier based PWM 
strategies which are used to control grid connected PV inverter, and maintain all the 
controlling features achieved by carrier based strategies. The results are obtained when 
the active power current component Id is varied from 0 to 1.0 p.u. (25 MVA and 11 KV 
based). Note that SHE produces the similar performance characteristics that of a THI 
PWM at approximately half the switching frequency, including ac voltage, system 
dynamics and current waveform quality [11] [12]. For further illustration of potential 
gains the switching losses with THI PWM and SHE modulation strategies for a 25 MVA 
PV inverter are tabulated in table 2. 

 

Table 2.Summary of switching losses with THI PWM and SHE modulation strategies 
for a 25 MVA PV inverter 

Operating 
condition 

P=20MW at 0.8 
power factor lagging 

Q=15 MVAr at zero 
power factor 

20 MW at unity 
power factor 

SHE 190.6 KW 190.2 KW 88.7 KW 

THI-PWM 401.2 KW 400.4  KW 401.2 KW 

 

7.  CONCLUSION 

 This paper enquired the suitability of SHE, which is very much important in 
drive applications of machine, applied to high power and medium voltage grid 
connected inverters used as interfacing units for large scale integration of renewable 
energy sources. It has also demonstrated that it won’t violate any functionalities of grid 
connected inverters i.e., it has the same functionalities of grid connected inverters 
operating with carrier based PWM strategies. In addition to traditional SHE with the 
adjustment of third harmonic magnitude, a universal solution for elimination of 
harmonics equations are solved such that the switching angles are spread over 900. This 
extraordinary feature is extensively used in practical realization of SHE at high 
modulation indices when more number of harmonics are getting eliminated. 
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