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DEFORMATION OF AN INFINITE POROELASTIC MEDIUM
HAVING DOUBLE POROSITY WITH GENERALIZED

THERMOELATICITY IN THE PRESENCE OF A SPHERICAL
CAVITY

Rajneesh Kumar1, Aseem Miglani2 and Sonika Chopra3

Abstract: A problem of deformation of an infinite thermoelastic body with double porosity,
having a spherical cavity subjected to harmonic source has been considered using the
Lord and Shulman theory of thermoelasticity (1967). The expressions for radial stress,
hoop stress, equilibrated stresses and temperature distribution has been obtained by using
Laplace transform technique. Further numerical inversion technique is used to obtain the
resulting components in the physical domain and the results are depicted graphically to
show the effect of porosity and thermal relaxation time.
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INTRODUCTION

Thermoelasticity deals with the dynamical system whose interaction with the
surrounding  include not only mechanical work and external work but the exchange
of heat also. Generalized thermoelasticity theories have been developed with the
objective of removing the paradox of infinite speed of thermal signals inherent in the
conventional coupled theory of thermoelasticity. The first generalization was proposed
by Lord and Shulman (1967), which involves one thermal relaxation time parameter.

 A porous medium is regarded as a material whose solid portion is continuously
connected throughout the whole volume to form a solid matrix with voids through
which the liquid or gas may flow. Mathematical theory of poroelasticity deals with the
mechanical behaviour of saturated porous medium. With the development of science
and technology, the dynamic analysis of porous media plays an important role in
various areas such as geophysics, soil mechanics, civil engineering, petroleum
engineering, environmental engineering, earthquakes and geomechanics etc. Biot
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(1941) proposed a general theory of three dimensional deformation  of fluid saturated
porous salts.

One important generalization of Biot’s theory of poroelasticity that has been studied
extensively started with the works by Barenblatt et. al. (1960), where the double
porosity model was first proposed to express the fluid flow in hydrocarbon reservoirs
and aquifers. Also, in the study of many important problems concerning the civil
engineering, there are new possibilities with the double porosity model. Wilson and
Aifanits (1984a) presented the theory of consolidation with the double porosity. Khaled
et. al. (1984) employed a finite element method to consider the numerical solutions of
the differential equation of the theory of consolidation with double porosity developed
by Wilson and Aifantis (1984a). Wilson and Aifantis (1984b) discussed the propagation
of acoustics waves in a fluid saturated porous medium. Beskos and Aifantis (1986)
presented the theory of consolidation with double porosity-II and obtained the analytical
solutions to two boundary value problems. Khalili and Valliappan (1996) studied the
unified theory of flow and deformation in double porous media. Khalili and Selvadurai
(2003) presented a fully coupled constitutive model for thermo-hydro–mechanical
analysis in elastic media with double porosity structure.

Some authors worked on the problems of thermoelasticity in a double porous
medium such as Svanadze (2005 and 2010), Straughan (2013) solved various problems
on elastic solids and thermoelastic solids with double porosity. Iesan and Quintanilla
(2014) used the Nunziato-Cowin theory of materials with voids to derive a theory of
thermoelastic solids, which have a double porosity structure.

Youseff (2005a) investigated the problem of an infinite body with a cylindrical
cavity and variable material properties in generalized thermoelasticity. Youseff (2005b)
studied the problem of an infinite material with a spherical cavity and variable thermal
conductivity subjected to ramp-type heating. Allam et. al. (2010) considered the model
of generalized thermoelasticity proposed by Green and Naghdi, to study the
electromagneto–thermoelastic interactions in an infinite perfectly conducting body
with a spherical cavity. Abd-Alla and Abo-Dahab (2012) investigated the effect of
rotation and initial stress on an infinite generalized magneto-thermoelastic diffusion
body with a spherical cavity. Scarpetta and Svanadze (2014) obtained the fundamental
solutions in the theory of thermoelasticity for solids with double porosity. Kumar et.
al. (2016) studied the reflection of plane waves in thermoelastic medium with double
porosity.

In this paper, a problem of deformation of an infinite thermoelastic body with
double porosity having a spherical cavity subjected to harmonic source has been
considered using the Lord and Shulman theory of thermoelasticity. Transformed
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technique has been used to find the components of stress and thermal temperature
distribution in the transformed domain. A numerical inversion technique is used to
obtain the components in the physical domain, and the results are depicted graphically
to show the effect of porosity and relaxation time.

Basic Equations

The constitutive relations and field equations for homogeneous isotropic thermoelastic
material with double porosity structure in the absence of  body forces, extrinsic
equilibrated body forces and heat sources are taken, following the  Iesan and
Quintanilla (2014) and the theory given by Lord and Shulman (1967), as

Constitutive Relations:

                                                              (1)

                                                                                                 (2)

                                                                                                 (3)

Equation of motion:

                                                      (4)

Equilibrated stress equations of motion:

                                                        (5)

                                                        (6)

Equation of heat conduction:

                                                            (7)

where �  and �  are Lame’s constants,  � is the mass density;

� �  3 2 t� � � �� � ; t�  is the linear thermal expansion; * C is the specific heat at
constant strain,  iu  is the displacement components;  ijt  is the stress tensor; 1� and 2�
are coefficients of equilibrated inertia;  i� is  the components of the equilibrated stress
vector associated to pores; i�  is  the components of the equilibrated stress vector
associated to fissures;  � is the volume fraction field corresponding to pores and  � is
the volume fraction field corresponding to fissures; *K  is the coefficient of thermal
conductivity, 0� is the thermal relaxation time, 1� and 2� are coefficients of equilibrated
inertia and 1 1 2, , , , ,b d b � � �  are constitutive coefficients;  ij� is the Kronecker’s delta;
T  is the temperature change measured form the absolute temperature � �0 0 0T T � ; a
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superposed dot represents differentiation with respect to time variable t .

Formulation of the problem

A homogeneous, isotropic thermoelastic infinite body having double porosity structure
with a spherical cavity of radius ‘a’ has been considered. The spherical cavity is
subjected to a harmonic source. Accordingly, the problem considered is a spherically
symmetric problem.

Thus, spherical polar coordinates ( , , )r � � are taken to represent a point of the

body at time t, also the origin of the coordinate system is taken at the centre of the
spherical cavity. As such all the variables considered will be functions of the radial
distance r and the time t.

Due to spherical symmetry, the displacement components are of the form

                                         (8)

The components of stress for a spherical symmetric system become

                                     (9)

                                (10)

                                            (11)

                                            (12)

                                            (13)

where

                      (14)

Introducing  the non-dimensional quantities as
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                           (15)

where 

Using the dimensionless quantities given by (15) on Eqs. (4)-(7) and Eq.(14) yields
(dropping  primes for convenience)

                                        (16)

                                 (17)

                               (18)

                               (19)

where

Initial conditions
The initial conditions of the problem, i.e., at t = 0, we have

                                 (20)

Solution of the problem

To solve the problem, we define the Laplace transform for the function f(t) as:
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                                        (21)

Applying the laplace transformation as defined above on the Eqs. (16)-(19) under the
initial conditions (20), we obtain

                               (22)

where

1B , 2B , 3B  and 4B  are given in appendix I.

The above system of equations can be factorized as

                          (23)

where  2
1� , 2

2� , 2
3� , 2

4�  are the roots of the following characteristic equation

                                     (24)

                       (25)

               (26)

               (27)

               (28)

where 1 2 3, , , ( 1,2,3,4)i i ig g g i � are given in appendix II.

On solving Eq. (14) with the aid of Eq.(25) and assuming that ( , )u r t vanishes at

infinity, we obtain

                             (29)

On using  Eqs. (25)-(28) in Eqs. (9), (12), (13) and with the help of Eqs. (15) and (21),
we obtain the corresponding expressions for radial stress and equilibrated stresses as
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                     (30)

                                 (31)

                                 (32)

where

Boundary conditions

Since, a harmonic source is applied at the surface of the cavity, i.e. at r = a, so the
boundary conditions at r = a are given by

i.    

ii. (33)

iii.

iv.

In Laplace transform domain, the boundary conditions become

i.

ii.

iii.

iv.

Substituting the values of ,, andrr r rt T� �  from  Eqs. (28), (30)-(32) in the boundary

conditions (34) yield  the corresponding expressions for radial stress, equilibrated
stresses and temperature distribution as

               (35)
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              (36)

              (37)

              (38)

where

                                          (39)

� � 1 ,2,3,4i i� �  are obtained by replacing thi  column of (39) with � �1 2 0  0   
T

F F  where

� �1 2 3 4, , , ; 1 , 2,3, 4i i i i iH H H H � are given in the appendix II.

This completes the solution of the problem in Laplace domain.

Special cases

Case 5.1: If we take 1 3 2 2 0b d� � � �� � � � � �  in the governing equations then

the problem is reduced to an infinite thermoelastic single porous body with a spherical
cavity. Accordingly expressions (35)-(38) gives the transformed stress and temperature
distributions for an infinite thermoelastic single porous body with a spherical cavity.

 Case 5.2: Taking 0 0� � , in the governing equations and the  Eqs.(35)-(38) yield

the corresponding expressions for an infinite thermoelastic double porous body  with
a spherical cavity in the context of  coupled theory of thermoelasticity.

Inversion of the Laplace transform
In order to invert the Laplace transform, we adopt a numerical inversion method
based on a Fourier series expansion {Honig and Hirdes(1984)}.

By this method the inverse ( )f t of the Laplace transform ( )f s is approximated

by

where N  is sufficiently large integer representing the number of terms in the

truncated Fourier series, chosen such that
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where 1� is a prescribed small positive number that corresponds to the degree of

accuracy required. The parameter c  is a positive free parameter that must be greater

than the real part of all the singularities of ( )f s .The optimal choice of c was obtained

to the criterion described in expansion {Honig and Hirdes (1984)}.

Two methods are used to reduce the total error. First, Korrecktur method is used
to reduce the discretization error. Next, the e-algorithm is used to reduce the truncation
error and hence to accelerate convergence. It should be noted that a good choice of

the free parameters N  and ct is not only important for the accuracy of the results but

also for the application of Korrecktur method and the methods for the acceleration of
convergence.

Numerical results and discussion

The material chosen for the purpose of numerical computation is copper, whose physical
data is given by Sherief and Saleh (2005) as,

The double porous parameters are taken as,

The software MATLAB has been used to find the values of radial stress rrt , hoop
stress ,t��  equilibrated stresses r� , r� and temperature distribution T .The variations
of these values with respect to radial distance r  are shown in figures (1)-(9). In
figs.1-5, effect of relaxtion time is shown graphically. In these figures, solid lines
correspond to Lord-Shulman (LS) theory of thermoelasticity and small dashed line
correspond to coupled theory (CT) of thermoelasticity. Also, the effect of porosity is
depicted graphically in figs.6-9. In figs. (6)-(9), solid lines correspond to thermal
double porous material (TDP) and small dashed line correspond to thermal primary
porous material (TPP).
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Effect of relaxation time

From figs.1 and 2, it is noticed that the trend and behavior of variation of rrt and
t�� are similar for both LS and CT theories of thermoelasticity. The value of these
stresses decreases for the region 2r � and increases further with increase in r . It is
found that the relaxation time decreases the values of stresses for LS theory in
comparison to CT theory. Figs. 3 and 4 show that the values of r� and r� increase for

1 2r� � , decrease for 2 3.5r� � and become almost stationary as 3.5r � . The
behavior of variation is same for both LS and CT theories of thermoelasticity. It is
clear from  the figures that for  r�  , the values are more for CT theory as compared to
the values of LS theory while incase of r�  , an opposite behavior is noticed.  Fig.5
depicts that, the value of T  increases for the region and then decreases onwards. The
values are more for LS theory due to the effect of relaxation time.

Fig.1 Variation of radial stress t
rr
 radial

distance r
Fig.2 Variation of hoop stress t��  w.r.t. w.r.t.

radial distance r

Fig.3 Variation of equilibrated stress

r� w.r.t. radial distance r

Fig.4 Variation of equilibrated stress

r� w.r.t. radial distance r
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Fig.5 Variation of temperature distribution

T  w.r.t. radial distance r

Fig.6 Variation of radial stress trr w.r.t.

radial distance r

Fig.7 Variation of hoop stress t�� w.r.t.

radial distance r

Fig.8 Variation of equilibrated stress r�

w.r.t. radial distance r

Fig.9 Variation of temperature distribution T  w.r.t  radial distance r
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Effect of porosity

Figs.6 and 7, depict that the trend and behavior of variation of and are similar for both
TDP and TPP. The value of and  decrease for and increases further as increases. The
values of these stresses are more for TPP as compared to the values for TDP due to
effect of porosity. Fig. 8 represents that the value of  is higher near the boundary
surface of the cavity and decreases with increase in  The value of TSP remain higher
than that of TDP. From fig. 9, it is clear that the trend and behavior of variation is
opposite for TDP and TPP. For TPP, it decreases for  and then increases onwards
while for TDP it initially increases for   and then decreases slowly and steadily.

Appendix-I

Appendix-II
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