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Abstract: The human proteome contains a significant number of intrinsically disordered proteins (IDPs). They
show unusual structural features that enable them to participate in diverse cellular functions and play significant
roles in cell signaling and reorganization processes. In addition, the actions of IDPs, their functional cooperativity,
conformational alterations and folding often accompany binding to a target macromolecule. Applying
bioinformatics approaches and with the aid of statistical methodologies, we investigated the statistical parameters
of binding regions (BRs) found in disordered human proteome. In this report, we detailed the bioinformatics
analysis of binding regions found in the IDPs. Statistical models for the occurrence of BRs, their length distribution
and percent occupancy in the parent proteins are shown. The frequency of BRs followed a Poisson distribution
pattern with increasing expectancy with the degree of disorderedness. The length of the individual BRs also
followed Poisson distribution with a mean of 6 residues, whereas, percentage of residues in BR showed a normal
distribution pattern. We also explored the physicochemical properties such as the grand average of hydropathy
(GRAVY) and the theoretical isoelectric points (pIs). The theoretical pIs of the BRs followed a bimodal distribution
as in the parent proteins. However, the mean acidic/basic pIs were significantly lower/higher than that of the
proteins, respectively. We further showed that the amino acid composition of BRs was enriched in hydrophobic
residues such as Ala, Val, Ile, Leu and Phe compared to the average sequence content of the proteins. Sequences
in a BR showed conformational adaptability mostly towards flexible coil structure and followed by helix, however,
the ordered secondary structural conformation was significantly lower in BRs than the proteins. Combining and
comparing these statistical information of BRs with other methods may be useful for high-throughput functional
annotation of proteins, drug target identification and drug discovery linking protein disorder.

Keywords: IDPs, phylogenetic tree, ANCHOR, sequence analysis, GRAVY, pI, amino acid composition, secondary
structure

Introduction

Recent investigations and genome analysis
revealed the unique presence of intrinsically
disordered proteins (IDPs) in eukaryotes (Dunker
et al., 2000; Xie et al., 2007a; Monsellier et al., 2008)
and more than 30% of amino acid residues in
human proteome are believed to be in the

disordered regions of proteins (Dosztányi et al.,
2010; Habchi et al., 2014; van der Lee et al., 2014;
Peng et al., 2014). High content of disorderedness
in proteome suggests a functional role of such
regions (Haynes et al., 2006; Cumberworth et al.,
2013; Fuxreiter et al., 2014). The presence of
disorder regions in a protein is thought to confer
large plasticity to interact efficiently with several
targets, as compared with a globular protein with
limited conformational flexibility (Wright and
Dyson, 1999; Romero et al., 2001; Dunker et al.,
2005). Thus, the disorderedness of proteins are
believed to play significant roles in several
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biochemical processes, and have been linked to
various molecular recognition processes (Wright
and Dyson, 1999; Uversky et al., 2000; Dunker and
Obradovic, 2001; Dunker et al., 2002; Xie et al.,
2007b; Fong et al., 2009) such as DNA binding,
cell cycle regulation, membrane transport and
other important cellular functions (Dunker et al.,
2002; Dyson and Wright, 2005; Tompa and
Csermely, 2004; Xie et al. ,  2007a). The
disorderedness, thus, became an intense topic to
know its composition, genomic distribution,
cellular localization and energetic aspects linked
to function and binding to a targeted partner-
molecule.

IDPs lack a compact well defined three
dimensional structures in their native state and
may instead have a number of
thermodynamically stable inter-converting states
(Babu et al., 2011; Edwards et al., 2009; Orosz and
Ovádi, 2011; Uversky et al., 2000; Vucetic et al.,
2003). Some of these proteins are completely
unfolded and some contain both the disordered
and folded domains with the degree of
disorderedness varying from protein to protein
(Chen et al., 2006; Dunker et al., 2000). These
proteins also have no consistency in their sizes
and structurally they resemble the denatured

states of ordered proteins (Ahmad et al., 2005;
Huang et al., 2006; Uversky, 2002; Weinreb et al.,
1996). In a solution, even under physiological
conditions, these proteins exist as flexible
ensembles of rapidly inter-convertible native
conformations (Ahmad et al., 2005; Cohlberg et
al., 2002; Huang et al., 2006; Uversky, 2002;
Uversky et al., 2000; Weinreb et al., 1996). The
binding of a disordered protein to a target
molecule or its interaction-partner often causes
folding and structural transformation,
particularly when it binds to a structured partner/
protein. Figure 1 shows an example of the
structural adaptability of a disordered protein �-
synuclein under certain conditions. �-Synuclein,
which remains in completely coil conformation
in aqueous buffer attains predominantly alpha
helical structure upon binding the membrane
(Figure 1A). Figure 1A also highlights the flexible
ensembles of rapidly inter-convertible native
conformations of �-synuclein solved by NMR
spectroscopy. Figure 1B shows how the binding
to a target protein induces beta sheet structure in
�-synuclein. Under pathological conditions,
intermolecular interactions may even induce beta
sheet structure leading to the aggregation of �-
synuclein (Figure 1C). Structural alterations of the

Figure 1: Structure of a disordered protein, -synuclein (UniProtKB: P37840). (A) Micelle bound -synuclein solved by NMR
spectroscopy shows predominantly alpha-helical structure (PDB: 2KKW). An ensemble of thermodynamically stable native
conformations are shown. N-terminal to C-terminal of the protein is colored in rainbow (violet to red). (B) Binding with a
protein induced beta sheet structure in -synuclein (PDB: 4BXL). (C) -synuclein takes beta sheet structure when self
aggregates to form insoluble fibrils (PDB: 4ZNN, 4RIL).
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binding region may, therefore, render a protein
function more effectively and with certain
specificity (Dyson and Wright, 2002). Recent
studies indicated that binding of the disordered
proteins precedes global folding and the
interactions follow a complex energy landscape.
Conformational transformations in a disordered
region are often much larger than the changes in
globular proteins (Bordelon et al., 2004; Dunker
et al., 2002; Gunasekaran et al., 2003; Sugase et al.,
2007). As such, the IDPs can bind to several
different partners or interfaces and perform
diverse functions (Sharma et al., 2014).

In human proteome and other species, a
significant number of proteins are found, which
are involved in cellular activity but lack any
globular fold in their native state. It represents at
least 30% of human proteome and they play a
seminal role in cell signaling, memory storage and
other cellular function (Nguyen Ba et al., 2012).
Therefore, it is important to understand the
differences in the structure-function paradigm as
it applies to globular proteins and to IDPs. Apart
from functional role, numerous IDPs are
associated with several human diseases,
including cancer,  cardiovascular disease,
amyloidosis, neurodegenerative disorder and
diabetes (Babu et al., 2011; Xie et al., 2007b). Some
of these diseases or disorders are inextricably
attached to IDPs. �-Synuclein, tau protein,
amyloid beta (A�) are among many IDPs
involved in diseases like Parkinson’s disease (PD)
and Alzheimer’s disease (AD). Also, it was
observed that �-synuclein and tau binding often
lead and accelerate the aggregation of the proteins
and formation of amyloid. Understanding
intermolecular interaction or binding among IDPs
and other candidates like small organic molecules
and small peptides, therefore, is an interesting
area to explore. The IDPs, as such could be
attractive targets for designing drug molecules
that may modulate the protein-protein
interactions (Apetri et al., 2006).

Some regions of the IDPs are prone to interact
with target molecules and act as binding regions
(BRs) or functional part of the proteins. Short
functional regions in the disordered region, based
on computational analysis and other prediction
methods, were detected and termed as molecular

recognition features (MoRFs) (Cheng et al., 2007;
Disfani et al., 2012; Mohan et al., 2006; Vacic et al.,
2007). Computational studies and experimental
investigations further verified that BRs in IDPs
are exposed and often considered as a primary
contact site for the interaction and binding
(Csizmók et al., 2005). These regions frequently
showed structural propensities similar to the
structure they attained upon complex formation
with the partner molecule (Dancheck et al., 2008;
Fuxreiter et al., 2004). In the present investigation,
we aimed to derive the statistical parameters of
the physicochemical properties linked to BRs in
the intrinsically disordered human proteome.
Elucidating binding regions (BRs) and associated
statistical knowledge is crucial to address
functional and binding roles of the proteins. Our
result provided the models of statistical
distributions on different aspects of the BRs in
IDPs such as the occurrence of BRs, their length,
percent occupancy in the parent proteins and the
correlations with the degree of disorderedness of
the proteins.

We selected all the experimentally validated
and annotated proteins with different degrees of
disorderedness from IDEAL (Intrinsically
Disordered proteins with Extensive Annotations
and Literature; release 21 March 2014) and
DisProt databases (release 6.02) (Fukuchi et al.,
2012; Sickmeier et al., 2007). Several computational
methods are available to predict the binding
regions in a disordered protein region (Sharma
et al., 2014) such as MoRFpred, DISOPRED3 and
ANCHOR. Among them, MoRFpred and
DISOPRED3 are developed to predict short
protein-binding regions in disorder region, which
are implicated in molecular recognition processes
(Jones and Cozzetto, 2015). We used ANCHOR
method to detect the BRs in disordered protein
dataset. Short segments of unfolded proteins that
showed propensity to interact with some target
molecules (mainly proteins) with a possibility of
structural recognition are key to the detection of
binding region by ANCHOR method (Dosztányi
et al., 2009; Mészáros et al., 2009). The method
utilizes a statistical potential matrix based on
pairwise interaction energy from known
coordinates using a dataset of globular proteins
(Dosztányi et al., 2005, 2009; Mészáros et al., 2009).
ANCHOR is independent of amino acid
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composition, although it was reported that the
construction of the algorithm for the prediction
of interaction energy implies its sensitivity to
amino acid composition (Mészáros et al., 2009).
We found more than 3000 binding regions in the
human disordered proteome which were partly
or fully disordered in their native state.

Different statistical models were invoked to
describe the distribution pattern of frequency and
length of the BRs, hydrophobicity and many other
properties which are very crucial for the binding
regions for their functional activity. The statistical
patterns and associated parameters so derived
could be used to predict the behavior and
property of new proteins that contain certain
degree of disorderedness. These information
could be useful in medicine and of interest in
protein disorder as a possible target for designing
drug molecules. Partial or fully disorder states
play critical role in cell signaling and also linked
to several disease formation and therefore the
binding regions could be the targets for designing
drug molecules to arrest/stop progression of
disease linked to protein disorder.

Materials and Methods

Compilation of Dataset

Information of the intrinsically disordered human
proteins was obtained from IDEAL (Intrinsically
Disordered proteins with Extensive Annotations
and Literature; release 21 March 2014) database
and DisProt database, release 6.02 (Fukuchi et al.,
2012; Sickmeier et al., 2007). We retrieved 471
unique protein sequences from UniProt (release
2014_07) after ID mapping. IDEAL database entries
have extensive annotations of disorderedness.
DisProt also lists the IDPs detected by experimental
methods such as fluorescence, circular dichroism,
FTIR, sensitivity to proteolysis etc. Therefore, our
dataset comprised experimentally determined and
extensively annotated IDPs and represented
human disordered proteome. Sequences were
obtained from UniProt in FASTA format and then
converted to strings of one letter amino acid codes
for further analysis.

Sequence Comparisons and Phylogenetic Analysis

Global alignment of the sequences was performed
by Clustal Omega, which is a multiple sequence

alignment program available at EMBL-EBI web
server (http://www.ebi.ac.uk/Tools/msa/clustalo/). It
uses seeded guide trees and hidden Markov
model profile-profile techniques to generate
alignments between sequences. Phylogenetic tree
was generated from the sequence alignment using
the neighbor-joining algorithm to construct trees
from the distance matrix by neighbor joining
method. The tree was rendered at the Interactive
Tree Of Life (iTOL) server, which is an online tool
for the display and manipulation of phylogenetic
trees (http://itol.embl.de/).

Calculation of Disorderedness and Binding
Regions

Disorderedness of the proteins was computed
using the IUPred program (Dosztányi et al., 2005).
The ANCHOR method was engaged to detect the
binding regions in the IDPs. ANCHOR analyzed
the input sequences of unfolded protein and
predicted the binding regions based on certain
scoring values (Dosztányi et al., 2009; Mészáros
et al., 2012). BR sequences were obtained from the
protein sequences using the position and length
parameters.

Sequence Analysis

Length, amino acid composition, charged
residues, total charge, and molecular weight were
calculated from the sequence data. The GRAVY
value for a BR or protein was calculated as the
average of hydropathy values (Kyte and Doolittle,
1982) of all the amino acids. Isoelectric points
were calculated using the Compute pI/MW tool
(Bjellqvist et al., 1994; Gasteiger et al., 2005) at
ExPASy Bioinformatics Resource Portal.
Computational algorithm PSIPRED was used to
predict the conformation propensity for each
protein from their amino acid sequence (Jones,
1999). Larger proteins were segmented into
domains using DomPred prior to secondary
structure prediction. Percentage of residues in a
protein with preference for a particular
conformation was measured by taking a ratio of
the total number of residues preferring a
particular conformation to the protein sequence
length. Secondary structure compositions of BRs
were obtained from the parent protein analysis
using the position and length parameters.
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Statistical Analysis

All the statistical analysis was performed in
Wolfram Mathematica 10. Cramér-von Mises test
(Anderson and Darling, 1952) was used to test the
normality of the data. For the normally
distributed data, mean, standard deviation (SD)
and standard error of mean (SEM) were
calculated. Significance of the mean differences
was established with Student’s t-test and the null
hypotheses were rejected at the 5 percent level of
significance. Probability values of less than 0.0005
were considered as highly significant and
denoted by *** in the graphs. Likewise, the
probability values in between 0.0005 and 0.005
were considered as very significant and denoted
by ** in the graphs and the rest were denoted by
a single star. Poisson distribution was fitted to the
BR frequency and length data (discrete random
variables). The probability mass function (PMF)
is given by:
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where |x| is the floor function.

Generalized Poisson distribution function or
the Poisson-Consul distribution is given by the
equation 3.
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Normal distribution with mean (µ) and
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distributed data. The probability distribution
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where erf is the error function.

PDF and CDF of the skewed normal
distribution were described by the following two
equations, respectively.
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For the bimodal distributions, a mixture of
distributions was fitted to the data. In regression
analysis straight lines passing through the origin
were fitted to the data.

Results and Discussion

The protein dataset (Table S1) comprised
experimentally determined disordered proteins
obtained from IDEAL and DisProt databases.
These proteins were extensively annotated IDPs
and represented human disordered proteome.
Based on the content of structural disorderedness,
the proteins were grouped into three categories
as suggested in previous reports (Das et al., 2014;
Schad et al., 2013). In the dataset, the total number
of largely disordered proteins (LDP, structural
disorderedness >70%) was 71. 163 proteins with
disorderedness ranging from 30 to 70% were
grouped as moderately disordered proteins
(MDP). Rest of the proteins, having less than 30%
disorderedness, was grouped as partially
disordered protein (PDP).

We compared all the sequences of human
disordered proteome in the dataset using the
multiple sequence alignment tool, Clustal Omega.
A phylogenetic tree was derived from this
alignment to study the similarity and
evolutionary distances between the sequences.
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Closely similar proteins were grouped together
and the dissimilar proteins got separated in
different groups. The relationships among the
proteins are shown in cladograms (Figure 2). The
detailed tree with branch length information and
leaf labels is given in the supporting information
(Scheme S1). Figure 2 shows the cladograms of
the tree with 471 leafs in the rooted and unrooted
modes. Some important disease related
disordered proteins such as �-synuclein, BRCA1,
p53 and amyloid-� are marked. The tree suggests
that the �-synuclein is closer to BRCA1 in
sequence similarity than p53 or amyloid-�.
Proteins with different degrees of disorderedness
were also color coded to show their distribution
among the different clades of disordered proteins.
It was found that all the clades have proteins with
varying degree of disorderedness.

We used ANCHOR algorithm to detect the
BRs in disordered protein dataset. ANCHOR
largely depends on the pair-wise energy
estimation method that is used in IUpred
algorithm. IUpred was used to quantitate the
disorderedness of the proteins. Binding regions
were selected by ANCHOR algorithm by
identifying region in the polypeptide chain that
are in disordered regions and not supported by
favorable intra chain interactions to attain folded
structure. ANCHOR detected 3494 binding
regions (BRs) in 471 unique human proteins with
different degree of disorderedness (Table S1 and
S2). Table S1 lists the number of BRs in each
protein, their total lengths and percent occupancy
in the parent protein, whereas, Table S2 lists the
details of the individual binding regions. Most of
the proteins contained multiple binding regions.

Figure 3A and 3B shows the probability
distributions of BR frequency in all the three
groups of protein, whereas, Figure 3C and 3D
shows the probability distribution of finding a BR
per 100 residues of a protein. Interestingly, the
number of BRs did not always follow a normal
distribution. Instead, it shows a Poisson
distribution pattern suggesting that the
occurrence of BRs in a protein is a stochastic
process, which satisfies the Markov property
(Durbin, 1998; Nguyen Ba et al., 2012). Figure 3
shows the fitted poison distributions for BRs in
whole protein and also with respect to 100

residues in each group of proteins. The Poisson
distribution analysis provided the expectation
values (µ), which represent the occurrence rate
of the event (here number of BRs). The expected
value of BRs was 3 in MDP and LDP. In PDP the
expected BR frequency was 1 (Table 1). However,
the expected values of BRs per 100 residues of a
protein were found to be 0, 1 and 2 for PDP, MDP
and LDP, respectively. Interestingly we observed
that the percentage of residues in BR followed a
normal distribution pattern. In PDP the normal
distribution was positively skewed. We observed
a shift in the modal class with the increasing
degree of disorderedness in proteins. In the LDPs
the percentage of residues in BRs were very high
compared to the MDPs or PDPs. The increase in
the number of expectation values with protein
disorderedness was within the scope of
ANCHOR algorithm, which was used to detect
the BRs in the disordered protein dataset,
however, we described here the detailed statistics
of BR frequencies, provided the quantitative
parameters and showed how the BR frequencies
correlates with the disorderedness of the protein,
which would be useful for understanding the
origin of binding regions in disordered as well as
ordered proteins.

We further studied the distribution pattern of
the length of BRs with respect to degree of protein
disorderedness. We observed that the content of
BRs did not follow a normal distribution.
Generalized Poison distribution formula fitted the
data much better than the normal distribution.
Figure 3E and 3F displays the length distribution

Table 1
Poisson/Poisson-Consul distribution parameters
(µ and ) for BR frequency, BR frequency per 100

residues and the length of the BRs

Variable Group µ �

BR frequency PDP 1.41 0.56

MDP 3.82 0.67

LDP 3.83 0.70

BR frequency per 100 PDP 0.49 —
residues of protein MDP 1.65 —

LDP 2.42 —

BR length PDP 6.40 0.49

MDP 6.38 0.66

LDP 6.44 0.75
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Figure 2: Human disordered proteome tree. (A) A 471 leaf tree with colored clades rendered in circular mode. The tree is
shown without branch length information. (B) The same tree is shown in unrooted mode. Some important disease related
disordered proteins are marked. Color strip dataset was used to define branch colors for different group of disordered proteins:
partially disordered proteins (PDP), gold; moderately disordered proteins (MDP), blue; largely disordered proteins (LDP),
green.

Figure 3: Frequency and length distribution of binding regions (BRs). (A) Probability of occurrence of a BR (BR frequency) in
different group of disordered proteins. Probability mass function (PMF) of the fitted Generalized Poisson Distribution is
shown. (B) Cumulative distribution function (CDF) of the BR frequency. (C) Probability of occurrence of a BR per 100 residues
of a protein. (D) CDF of the BR frequency per 100 residues of a protein. (E) Probability distribution (PMF) of individual BR
lengths in different group of disordered proteins. (F) CDF of the BR length distribution. (G) The distribution of BR content
(percent occupancy) in a protein. PDF of the fitted skewed/normal distribution is shown. (H) CDF of the BR content
distribution. Color key: gold, partially disordered proteins (PDP); blue, moderately disordered proteins (MDP); green, largely
disordered proteins (LDP).
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of the individual BRs and Figure 3G and 3H
shows the percent occupancy in different group
of proteins. We observed an expectation value of
the BR length of 6 residues in all the three groups
of protein (Table 1). However, the spread of the
distributions increased with the increase in
disorderedness.

In order to better understand how the BR
frequencies, BR frequency per 100 residues of a
protein, BR length and percent occupancy
correlates with the protein disorderedness we
performed regression analysis as shown in the
Figure 4. Frequency versus disorderedness plots
suggested linear regressions. Therefore, straight
lines passing through origins were fitted to the
data. BR expectancy per 100 residues produced
discrete densities over the continuous axis of
protein disorderedness, which gave a much
clearer understanding about how the expected
number of BRs per 100 residues changes
depending on the protein disorderedness.
Analysis showed that the length of the individual
BRs did not correlate with the disorderedness of
the protein, which was evident from the very low
R2 value of the linear model fit (Figure 4F).
However, the percent occupancy of the BRs in a
protein increased linearly along with the protein
disorderedness with a coefficient of 0.62.

Using the hydropathy indexes (Wu et al., 2006)
of individual amino acids, grand average
hydropathy (GRAVY) values of the BRs and the
parent proteins (Tables S1 and S2) were derived.
The calculated GRAVY indexes of all the proteins
were predominantly negative and varied between
0 to -2, approximately (Figure 5 and Table 2 and
S3). It was expected as the proteins were rich in
polar and charged residues. Mean GRAVY
decreased with the increase in the degree of
disorderedness (PDP, MDP and LDP). However,
the spread of GRAVY values was very high
(ranging 2 to -2, approximately) for BRs, mean
nearing neutrality (Figure 5).

Distribution of the isoelectric points (pI) of
BRs and the parent proteins are shown in the
Figure 6. Statistical analysis showed that
theoretical pI values followed a bimodal
distribution for both the proteins and BRs (Figure
6 and Table 3). pIs were mostly distributed either
in acidic or in basic regions, but rarely at the

neutral pH. On both sides, they followed a normal
distribution. Such multimodal distributions of pIs
for the whole proteome are known in the
literature (Kiraga et al., 2007; Nandi et al., 2005;
Taylor et al., 2002). pI distribution of the BRs
closely followed that of the parent proteins in
terms of the density. However, the mean pI of BRs
in the acid ranges was found to be significantly
less than their parent proteins and in the basic
ranges significantly higher.

The amino acid composition of the binding
regions is shown in Figure 7 and compared to the
protein sequence composition. ANCHOR is
independent of amino acid composition, although
it was reported that the construction of the
algorithm for the prediction of interaction energy
implies its sensitivity to amino acid composition
(Mészáros et al., 2009). In most disordered regions
the functional amino acid residues remain
unknown (Nguyen Ba et al., 2012). We have found
that the BRs mostly differ from their parent
proteins in the content of charged or polar amino
acids. Charged amino acids such as Glu, Lys, Arg,
and Asp are present in significantly lower
amounts in the BRs so are the uncharged polar
residues: Thr and Asn. Hydrophobic amino acids
such as Leu, Ala, Val, Ile and Phe are more
abundant in the BRs (Maity and Maiti, 2012). Ser
alone in the uncharged-polar group is present in
significantly higher number in the BRs. It is the
smallest amino acid in this group having least
bulky side-chain. Hydrophobic and hydrogen
bonding interactions are the major players in the

Table 2
Fitted Normal Distribution parameters for GRAVY

Groups PDP MDP LDP

µ � µ � µ �

Protein -0.41 0.25 -0.66 0.25 -0.98 0.42

BR -0.35 0.74 -0.05 0.81 0.30 0.91

Table 3
Mean acidic and basic pIs of proteins and BRs.

Values are given as µ ± 

Groups pI acidic pI basic

Protein 5.68±0.71 9.03±1.05

BR 4.91±1.05 9.63±1.24

t test (Protein vs BR): pI acidic 3.53295*10-76; pI basic
1.47157*10-29
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Figure 4: Correlation of BR frequency/occupancy with protein disorderedness. Distribution of BR frequency with protein
disorderedness (A) and the fitted linear model (B). Distribution of BR frequency per 100 residues of protein with the protein
disorderedness (C) and the fitted linear model (D). Distribution of BR lengths with protein disorderedness (E) and the fitted
linear model (F). Distribution of BR occupancy in a protein with the protein disorderedness (G) and the fitted linear model
(H). Confidence level bands at 95% are shown.

Figure 5: GRAVY distribution of the whole proteins versus BRs. Row 1: GRAVY of the whole proteins; row 2: GRAVY of the
BRs. Column 1: histogram of PDF; column 2: histogram of CDF; column 3: fitted normal distributions (PDF); column 4: fitted
normal distributions (CDF). Color key: gold, PDP; blue, MDP; green, LDP.

Figure 6: Distribution of isoelectric points (pI) in proteins and BRs. (A) Histograms of pI densities. (B) Histograms of
cumulative densities of pI. (C) Fitted bimodal distributions. (D) CDF of the fitted distributions to pI densities. Color key:
gold, protein; blue, BR.
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ligand-protein or protein-protein binding (Jiang
et al., 2002). Contribution of electrostatic/ionic
interactions is much less compared to them.
Therefore, the less abundance of charged and
uncharged-polar residues and the prominence of
hydrophobic residues in the BRs are desirable and
justified. Figure 7 also shows the comparison of
mean residue molecular weights (MRW) of
protein and BRs. Although the mean MRW is
similar in both the BRs and Protein, the spread is
very high for the BRs.

Elucidating binding regions and associated
structure formation on these binding regions in
IDPs is significant as this is the starting point for
investigations into higher-order structure and,
thus, functions of IDPs. The conformations
(extended/�-strand, helix and coil), the residues
in proteins and in BRs prefer to adopt are shown
in Figure 8. It should be noted that ANCHOR
analysis is independent of the adopted secondary
structure (Mészáros et al., 2009) and, therefore, the
result was not biased by the algorithm. We found
that the ordered secondary structure decreased
with the increase in disorderedness of the protein.
Coil conformation was found to be the most
preferred conformation (Maity and Maiti, 2012)
in all the three groups of disordered proteins,
followed by helix and then the extended or �-
strand/sheet. BR structural propensity followed
a similar trend in all three groups as well.

However, in the PDP and MDP groups the BR
structure propensity toward coil conformation
was significantly higher than that of the proteins
in that group. In MDP, the propensity toward
helix was significantly lower for BRs. Although
the trend is visible, such statistical significance
could not be established in other groups.
However, when PDP, MDP and LDP data were
combined, we observed significantly less
propensity toward helix and higher propensity
toward coil in the BR residues (Figure 8D).
Propensity toward extended conformation was
also significantly lower in BRs. The overall
structural content of BR sequences was: extended
~6%, helix ~18% and coil conformation ~76%
indicating that binding region was dominated
with sequences that preferred to be flexible. In
total protein, however, structural preference of
the sequences was: extended ~9%, helix ~27% and
coil ~64%. The analysis showed that very few
residues preferred �-sheet/strand conformation
and both the BRs and the parent protein
molecules are rich in sequences, most of which
preferred coil/random conformation and the
propensity for coil conformation is more in BR
sequences.

Experimental and computational studies
highlighted widespread roles of protein disorder
in biological processes (Dunker et al., 2002; Dyson
and Wright, 2005; Gsponer et al., 2008; Krishnan

Figure 7: Comparison of amino acid composition between whole protein and the BRs. (A) Amino acids that are more abundant
in whole protein. (B) Amino acids that are more abundant in BRs. Significant variations were marked with asterisks. ***, p-
value <0.0005; **, p-value <0.005 but not <0.0005; *, p-value <0.05 but not <0.005. (C) Comparison of mean residue molecular
weight (MRW) distribution of BR and protein. (D) CDF of MRW histogram. (E) Fitted normal distributions of MRW (PDF).
(F) Fitted normal distributions of MRW (CDF). Color key: gold, protein; blue, BR.



In silico analysis of binding regions in disordered proteins 57

et al., 2014; Wright and Dyson, 1999). Recent
discovery showed that some protein phase
separation leads to formation of membrane less
organelles/component which have important
roles in cellular function; IDPs have significant
role in the formation of such assembly and
localization of many signaling proteins to act
efficiently. Protein disorder is also linked with
several diseases and, therefore, the disordered
proteins are considered important drug targets in
rational drug design (Cheng et al., 2006; Lao et al.,
2014). However, the disordered protein regions
do not act as isolated domains and the
surrounding segments in addition to its length
also govern its function and stability. Thus, it is
very important to characterize the large number
of disordered regions along with total protein to
realize their greater role in cellular activity and
to develop new strategies for drug design
targeting specific regions in IDPs.

Conclusion

Our analysis provided the content, composition
and statistical behavior of the binding regions in
disordered proteins and some of its
physicochemical aspects such as isoelectric point
and hydrophobicity.  We have shown the
distributions of BR lengths and their percent
occupancy in the parent proteins. We have
described the correlations of BR occurrence
frequencies, lengths and percentages with the
degree of disorderedness of the parent protein.
Statistical models for the occurrence of BRs in
disordered proteins  were derived. Some
parameters followed poison distribution and
some others showed normal distribution.
Theoretical pI values followed a bimodal
distribution. The statistical analysis further
illustrated how the linked parameters differed

along with the content of protein disorderedness.
The report also shows that the BRs contained
amino acids optimal for hydrophobic and the
hydrogen bonding type of interactions with the
target molecule/protein. Hydrophobicity of the
BRs was widespread and the pIs were more acidic
or more basic than that of the parent proteins. The
structural disposition of BRs towards the more
flexible coil conformation was also discussed. It
would be interesting to test the binding and
functional efficacy of the regions with some of the
target molecules.
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