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Abstract: The main concept of this paper is to introduce the notion of GF and GF
generalized proximal contraction and to establish the existence and uniqueness of
best proximity point for nonself mapping satisfying these contractions in complete
metric space. An example is also supplied in support of our result. As application
part, we introduce variational inequality problem.

1. INTRODUCTION

In 1922, Banach [15] introduced Banach’s contraction principle which states that,
“Let T be a self mapping on X where (X, d) is a complete metric space such that
d(Tx, Ty) � � d(x, y) for all x, y�X, where � �[0,1) then T has a unique fixed
point.”

Mathematically, if A and B are two non-empty subsets of metric space (X, d)
and T: A � B be nonself mapping. Then for the existence of fixed point of mapping

T, we have a necessary but not sufficient condition, which is T(A)� A  � �. If

T(A)�A=�, then d(x, Tx) > 0 for all x �A that is, set of fixed points is empty. In
such case, researcher try to established an element x � A which is in some sense
closest to Tx. If such an element exists, we call it best proximity point, that is , an
element x �A is called best proximity point of T if

d(x, Tx) = d(A, B) where d(A, B) = inf{d(x, y): x � A, y � B}. (1)

Best proximity point theory developed in this direction. The main motive of
best proximity point theory is to establish sufficient condition which gives us the
assurance of existence of best proximity points.

Firstly, the notion of best proximity point was initiated by Fan [1] for normed
spaces which states that

Theorem 1.1[1] Let A be a nonempty compact convex subset of a normed
linear space X and T: A � X be a continuous mapping. Then there exists x�A
such that ||x – Tx|| = d(Tx, A).

Afterwards, several mathematicians make practical and effective use of the
Fan’s theorem in many direction.
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Inspiring from[2,3,7] we prove the result of Roger- Hardy to nonself mapping
by introducing GF proximal contraction.

In 2012, Wardowski [6] introduced a new type of contractions which is known
as F-contraction as follow:

Definition 1.2[6] Let F : �+ ��� be a function satisfying the following
conditions:

(F1) F is strictly increasing, i.e., for all x, y � �+ such that, if x < y, then F(x)
< F(y);

(F2) for each sequence {�n} of positive numbers, lim n� �
�n = 0 if and only if

lim n� �
 F(�n) = –� ;

(F3) there exists k � (0, 1) such that lim ��0+ �
k F(�) = 0.

We represent �F, the family of all functions F that satisfy the conditions
(F1)–(F3).

Definition 1.3[6] Let (X, d) be a metric space. Then T : X � X is called F-
contraction if there exists T > 0 such that

d(T x, T y) > 0 ��� + F(d(T x, T y)) � F(d(x, y)), (2)

for all x, y � X, where F � �F.

When we consider in (2) the different types of the mapping F then we obtain
the variety of contractions, some of them are of a type known in the literature. See
the following examples

Example 1.4[6] Let F : �+ ��� be given by the formula F (�) = ln �. It is
clear that F satisfies (F1)-(F3) ((F3) for any k � (0, 1)). Each mapping 

T:X � X satisfying (2) is an F-contraction such that

d(Tx, Ty)�e–� d(x, y),for all x, y�X, Tx �Ty.y. (3)

It is clear that for x, y� X such that Tx = Tyy the inequality

 d(Tx, Ty) � e–� d(x, y)

also holds, i.e. T is a Banach contraction [15].

Hussain et al.[8] introduced a family of functions as follows:

Definition 1.5[8] Let G denotes the set of all functions G: R+4 � R+ satisfying:

(G) for all t1, t2, t3, t4 � R+ with t1t2t3t4 = 0 there exists � > 0 such that

 G(t1, t2, t3, t4) = �.
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Example 1.6[8] If G(t1, t2, t3, t4) = L min{t1, t2, t3, t4} + � where L � R+ and �
> 0, then G � �G..

Example 1.7[8] If G(t1, t2, t3, t4) = L ln (min{t1, t2, t3, t4} + 1) + � where L � R+

and � > 0, then G �  G..

To start our main results, firstly we focus on some most basic definitions and
results.

Let R, N and Q denote the set of all real numbers, positive integers and rational
numbers, respectively. Let A and B be two nonempty subsets of a metric space (X,
d). By using the usual notation in nonlinear analysis, we recall the following notions:

A0 ={x � A : d(x, y) = d(A,B), for some y � B},

B0 ={y � B : d(x, y) = d(A,B), for some x � A}.

 As A0 and B0 are nonempty sets given by Kier et al.[9]. Also, A0 is
contained in the boundary of A, proved by Sadiq Bashan ad Veermani[10]. In the
same pattern, we try to establish new types of GF and GF generalized proximal
contraction and for this purpose we recollect the fundamental definitions, as follows:

Definition 1.8[14] Let (A, B) be a pair of nonempty subsets of a metric space
(X, d) with A0 � � . The pair (A, B) is said to have Property if and only if d(u, Tx)
= d(A, B), d(v, Ty) = d(A, B),

� d(u, v)=d(Tx, Ty), (4)

where u, v � A0 and Tx, Ty � B0.

Definition 1.9[11] Let A and B be two nonempty subsets of a metric space (X,
d). A non-self mapping T: A � B is said to be a proximal contraction of the first kind
if

d(u, Tx) = d(A, B), d(v, Ty) = d(A, B) � d(u, v) � k d(x, y),

for all u, v, x, y � A, where k � [0,1).

Definition 1.10[11] Let A and B be two nonempty subsets of a metric space
(X, d). A non-self mapping T: A � B is said to be a proximal contraction of the
second kind if

d(u, Tx) = d(A, B)= d(v, Ty) � d(Tu, Tv) � k d(Tx, Ty), for all u, v, x, y � A,
where k � [0,1).

Many authors generalized these concepts of proximal and proved their best
approximation theorems.

Afterthat Basha [4] introduced the concept of generalized proximal contraction
of first and second kind which are defined below:
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Definition1.11[4] A mapping T : A � B is said to be generalized proximal
contraction of the first kind if there exist non-negative numbers �, �, �, � with � +
� + � + 2� < 1such that the conditions

d(u, Tx)=d(A, B) and d(v, Ty)=d(A, B)

imply the inequality that

d(u, v)���d(x, y) +��d(x, u) +��d(y, v) + �[d(x, v) + d(y, u)] for all u, v, x, y in A.

If T is a self-mapping on A, then the requirement in the preceding definition
reduces to the condition that

d(Tx,Ty)���d(x, y) + �d(x, Tx) + �d(y, Ty) + �[d(x, Ty) + d(y, Tx)].

Definition 1.12[4] A mapping T : A � B is said to be a generalized proximal
contraction of the second kind if there exist non-negative numbers �, �, �,
� with � + � + � + 2� < 1 such that the conditions d(u, Tx)=d(A, B) and d(v,
Ty)=d(A, B)

imply the inequality

d(Tu, Tv)��d(Tx, Ty) + �d(Tx, Tu) + �d(Ty, Tv) + �[d(Tx, Tv)+d(Ty, Tu)] for
all u, v, x, y in A.

Definition 1.13[7] Let A and B be nonempty subsets of a metric space (X, d).
A mapping T : A � B is called a Roger–Hardy type generalized F-contraction
mapping if there exists � > 0 and F �  F such that

d(Tx, Ty) > 0 ��� + F(d(Tx, Ty)) � F(�d(x, y) + �d(x, T x) +   �d(y, Ty) + �d(x,
Ty) + �d(y, T x)) for all x, y � X and �, �, �, �, � � 0 with � + � + � + � + � < 1.

2. GF PROXIMAL CONTRACTIONS

In this section, we introduce GF proximal contraction and prove the existence
of unique best proximity point for GF proximal contraction in complete metric
space.

Definition 2.1 Let (X, d) be a complete metric space and T be a non self-
mapping from A to B where A and B are closed subset of complete metric space
(X, d). T is said to be an GF- proximal contraction if for x, y � X with d(Tx, T y) >
0 we have,

G(d(x, u), d(y, v), d(x, v), d(y, u)) + F d(u, v) � F d(x, y)

where G � �G and F � �F.

Theorem 2.2 Let (X, d) be complete metric space and A, B be two non empty
closed subset of X. A0, B0 be nonempty subset of A and B respectively . Let T:
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A�B be a mapping satisfying following assertions:

I. T is continuous;

II. T has P-property;

III. T is an GF-proximal contraction ;

IV. T(A0)� B0.

Then T has unique element x � A such that d(x, Tx)=d(A, B) and if {xn} is a
sequence in A0 satisfying d(xn+1, Txn)=d(A, B) for all n � 0, then limn��

xn = x.

Proof Since A0 is nonempty, we take x0 � A. As Tx0�T(A0)� B0, we can find
x1 � AA0 such that d(x1, T x0) = d(A, B).

Similarly, since Tx1�T(A0)� B0, there exists x2� AA0 such that

d(x2, T x1) = d(A, B).

Repeating this process, we can get a sequence {xn} in A0 satisfying

d(xn+1, Txn) = d(A, B) for any n � N.

Since (A, B) has the P-property, we have that

d(xn, xn+1) = d(Txn–1, Txn) for any n � N.

As T is GF-proximal contraction, for any n � N, we have that

 G(d(xn–1, xn), d(xn, xn+1),d(xn–1, xn+1),d(xn, xn)) + Fd(xn, xn+1)d� Fd(xn–1, xn)

Now since, d(xn–1, xn).d(xn, xn+1).d(xn–1, xn+1).0 = 0, so from (G) there exists �
> 0 such that,

Gd(xn–1, xn), d(xn, xn+1), d(xn–1, xn+1), 0 = �.

we deduce that,

Fd(xn, xn+1) � Fd(xn–1, xn) – �.

� F d(xn–2, xn–1) – 2� � ... � F(d(x0, x1)) – n�.

This implies that

Fd(xn, xn+1) � F(d(x0, x1)) – n�.

By taking limit as n � � in we have,

limn�� F d(xn, xn+1) = – �, and since, F � �F we obtain,

limn�� d(xn, xn+1)=0.

Now from (F3), there exists 0 <k< 1 such that,

limn��[d(xn, xn+1)]
kFd(xn, xn+1) = 0.
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By we have,

limn��[d(xn, xn+1)]
k[F d(xn, xn+1) – F(d(x0, x1))]

� limn��[d(xn, xn+1)]
k[(F(d(x0, x1)) – n�) – F(d(x0, x1)]

�–n� [d(xn, xn+1)]
k

� 0.

By taking limit as n �� in above equation, we have

limn�� n[d(xn, xn+1)]
k = 0.

Hence limn�� n1/k d(xn, xn+1)=0,

now limn�� n1/k d(xn, xn+1)=0.

Ensures that the series 
1n
d

�

�� (xn, xn+1)=0. This implies that {xn} is a Cauchy

sequence. Thus we proved that {xn} is a Cauchy sequence. Completeness of X
ensures that there exist x* � X such that, xn � x* as n ��.

Since T is continuous, we have Txn � Tx*. By considering that the sequence
(d(xn+1, Txn)) is a constant sequence with value d(A, B),we deduce d(x*, Tx*) =
d(A, B). This means that x* is a best proximity point of T. For uniqueness, suppose
that x1 and x2 are two best proximity points of T with x1 � x2. This means that

d(x1, Tx1) = d(A, B)

d(x2, Tx2) = d(A, B)

Again, T is GF-proximal contraction, we have

G (d(x1, x1), d(x2, x2), d(x1, x2), d(x2, x1)) + F d(x1, x2) � F d(x1, x2), implies

� + Fd(x1,x2) � Fd(x1,x2),

which is contradiction. Hence x1 = x2.

Therefore T has a unique best proximity point.

Corollary 2.3: Let A and B be nonempty closed subsets of a complete metric
space (X, d). Assume that A0 is nonempty and T: A � B is a mapping for which
there exists a function F belongs to family F and a contant T > 0 such that for each
x, y ��A and u � Tx, v � Ty with

d(u,Tx)=d(A,B)=d(v,Ty), we have

� + F(d(u,v)) ��F(d(x,y)).

Further assume that the following condition hold, for each x � A0, we have Tx
� B0. Then T has a best proximity point.
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Example 2.4: Let X = R×R be endowed with a metric

d((x1, x2),(y1, y2))=|x1x2|+|y1y2| for each x,y � X.

Take A={(0, x): – 1 � x � 1} and B={(2,x): – 1 � x � 1}.

Define T:A ��B, T(0,x)= 

1
2, ,        if x  0

2

{(2, ), (2,  x)},  otherwise

x

x

� �� � ��� �
� ��
�
�

Take F = ln x for each x � (0, �) and � = 1/8.

When we take x = (0, 1/2), y = (0, 3/4) implies T(x) = (1, 3/4) and T(y) = (1, 7/
8). We have d(u, Tx) = 2 = d(A, B) = d(v, Ty) for u = (0, 3/4) and v = (0, 7/8).

Now, L.H.S. of GF proximal contraction implies

� + F((0, 3/4),(0, 7/8)) = 1/8 3 ln 2

and R.H.S. implies F((0, 1/2),(0, 3/4))=F|(1/2) – 3/4| = F(1/4) = 2 ln 2

from above two equalities we obtain, T is GF proximal contraction.

Now, we introduce GF generalized proximal contraction and show that the
existence of best proximity point for this contraction is unique.

Definition 2.5. Let (X, d) be a complete metric space and T be a nonself mapping
from A to B where A and B are closed subset of complete metric space (X, d). T is
said to be an GF- generalized proximal contraction if for x, y � X with d(Tx, Ty) >
0 we have,

G(d(x, u), d(y, v), d(x, v), d(y, u))+Fd(u, v) � F (�d (x, y) + �d(x, u) +

�d (y, v) + �d (x, v) + Ld(y, u))

where G ���G and F ���F, �, �, �, �, L � 0, ��+ � + � + 2� = 1 and ��1.

Theorem 2.6. Let(X, d) be complete metric space and A, B be two non empty
closed subset of X. A0, B0 be nonempty subset of A and B respectively. Let T: A
�B be a mapping satisfying following assertions:

  I. T is continuous;

 II. T has P-property;

III. T is an GF-generalized proximal contraction;

IV. T(A0)� B0

Then T has unique element x � A such that d(x, Tx) = d(A, B) and if {xn} is a
sequence in A0 satisfying d(xn+1,Txn)=d(A,B) for all n � 0, then limn��xn=x.
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Proof: Since A0 is nonempty, we take x0 � A. As Tx0 � T(A0)� B0, we can
find x1 � A0 such that

d(x1, Tx0) = d(A, B).

Similarly, since Tx1 � T(A0) �  B0, there exists x2 � AA0 such that

d(x2, Tx1) = d(A, B).

Repeating this process, we can get a sequence {xn} in A0 satisfying

d(xn+1, Txn) = d(A, B) for any n � N.

Since (A,B) has the P-property, we have that

d(xn, xn+1) = d(Txn–1, Txn) for any n � N.

As T is GF-proximal contraction,for any n ��N, we have that

G(d(xn–1, xn), d(xn, xn+1), d(xn–1, xn+1), d(xn, xn)) + Fd(xn, xn+1) � F(ád

 (xn–1, xn) + �d (xn–1, xn) + �d (xn, xn+1) + �d (xn–1, xn+1) + Ld (xn, xn))

which implies

 G(d(xn–1, xn), d(xn, xn+1), d(xn–1, xn+1), 0) + F(d(xn, xn+1)) � F(�d (xn–1,xn) + �d
(xn–1, xn) + �d(xn, xn+1) + �d (xn–1, xn+1) + 0)

Now since, d(xn–1, xn)·d(xn, xn+1)· d(xn–1, xn+1)· 0 = 0,

so from (G) there exists T > 0 such that,

Gd(xn–1,xn), d(xn, xn+1), d(xn–1, xn+1), 0 = � .

Fd(xn, xn+1) � F(�d (xn–1, xn) + �d (xn–1, xn) + �d (xn, xn+1) + �(d (xn–1, xn)

 + d (xn,xn+1))) – �

 � F ((� + � + �) d (xn–1, xn) + (� + �) d (xn, xn+1)) – �

Since F is strictly increasing, we deduce that

 d (xn, xn+1) < (� + � + �) d (xn–1, xn) + (� + �) d (xn, xn+1) .

This implies (1– � – �) d (xn, xn+1) < (� + � + �) d (xn–1, xn) for all n � N .

 From � + � + � + 2� = 1 and ��1, we deduce that 1 – � – � > 0 and so

d(xn, xn+1) < (� + � + �) /(1 – � – �) d (xn–1, xn) = d (xn–1, xn) for all n � N .
Consequently

F d(xn, xn+1) � F d(xn–1, xn) – � .

Continuing this process, we get
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Fd(xn, xn+1) � F d(xn–1, xn) – �.

� F d(xn–2, xn–1) – 2��� ... � F(d(x0, x1)) – n�.

By taking limit as n ��  in we have, limn��
 Fd(xn, xn+1) = –� , and since, F �

 F we obtain,

limn��
d(xn, xn+1)=0.

Now from (F3), there exists 0 <k< 1 such that,

limn��
[d(xn, xn+1)]

kF d(xn, xn+1) = 0.

By we have,

limn��
[d(xn, xn+1)]

k[F d(xn, xn+1) – F(d(x0, x1))] � – n� [d(xn, xn+1)]
k � 0.

By taking limit as n �� �  in above equation, we have

limn��
 n[d(xn, xn+1)]

k = 0.

Hence limn��
 n1/k d(xn, xn+1)=0, now limn��

n1/k d(xn, xn+1)=0.

Ensures that the series 1n
�
�� d(xn,xn+1)=0. This implies that {xn} is a Cauchy

sequence. Thus we proved that {xn} is a Cauchy sequence. Completeness of X
ensures that there exist x* � X such that, xn � x* as n � �.

Since T is continuous ,we have Txn � Tx*. By considering that the sequence
(d(xn+1, Txn)) is a constant sequence with value d(A, B),we deduce d(x*, Tx*) =
d(A, B). This means that x* is a best proximity point of T. For uniqueness, suppose
that x1 and x2 are two best proximity points of T with x1=x2. This means that

 d(x1, Tx1) = d(A, B)

 d(x2, Tx2) = d(A, B)

Again, T is GF-generalized proximal contraction, we have

G(d(x1,x1),d(x2,x2),d(x1,x2),d(x2,x1)) + Fd(x1,x2) � F(�d(x1,x2) +��d(x1,x1)+  
                                                 �d(x2,x2)+ �d(x1,x2)+Ld(x2,x1))

=F(�+�+L)d(x1,x2).

Which is contradiction, if �+�+L � 1 ad hence x1=x2.

Corollary 2.7. Let A and B be nonempty closed subsets of a complete metric
space (X, d). Assume that A0 is nonempty and T: A � B is a mapping for which
there exists a function F belongs to family F and a constant T > 0 such that for each
x, y � A and u � Tx, v � Ty with

d(u,Tx)=d(A,B)=d(v,Ty), we have

� + F(d(u,v))�F(�d(x,y) + �d(x,u) + �d(y,v) + �d(x,v)+Ld(y,u)).
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Where F ���F, �, �, �, �, L � 0; �+�+�+2�=1, ��1.

If for each x � AA0, we have Tx� B0, then T has a best proximity point.

Example 2.8: when we take particular values of �, �, �, � and L that is �=1, �,
�, �, L=0 in example 2.4 then we obtain GF generalized proximal contraction.

3. VARIATIONAL INEQUALITY PROBLEM

Now we consider the subsection, let H denote a real Hilbert space, with inner
product and induced norm represented by <,> and ||.|| respectively. Let K be a non
empty, closed and convex subset of H and A:H�H be a montone operator. We
consider the following monotone variational inequality problem:

Find u � K such that <Au, v – >e”0 for all v � K.
(3.1)

In early sixties variational inequality theory was introduced by Stamphaccia[16]
and Fichera[17]. To solve the problem (3.1) we use the metric projection, say PK:
H�K, which is a important tool for solving a variational inequality problem. Referring
to Detuch[13], we contrive that for each u�H, there exists a unique nearest
point PKu�K satisfying

||u–PKu|| ����u–v||, for all v � K.

Before proceding to check the link between variational inequality problem and
special fixed point problem, we need the following lemma’s.

Lemma 3.1 Let z � H. Then u � K satisfies the inequality u z, y u� � �
0, for all y � K if and only if u = PKz.

Lemma 3.2 Let A : H� H be monotone. Then u�K is a solution of  (Au, v–
u) � 0, for all v � K, if and only if u = PK(u–�Au), with � > 0.

On the basis of these lemma’s, we prove some general convergence results on
the solution of (3.1).

Theorem 3.3 Let K be a nonempty, closed, and convex subset of a real Hilbert
space H and IK be identity operator on K. Assume that the monotone operator
A:H�H satisfies

(a) PK(IK-�A):K � K is a GF proximal contraction with � > 0.

(b) PK(IK-�A):K � K is a GF generalized proximal contraction with � > 0.

Then there exists a unique point u � K such that <Au, v-u> ³ 0 for all v�K.
Moreover, for each u0� K, there exist a sequence {un}�K such that un+1=PK(un-
Aun)for every n �N � {0}and un � u0.
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Proof: Define an operator T : K � K by Tx = PK(x–�Ax) for all x � K. By
Lemma 3.1, u � K is a solution of <Au, v–u> e” 0 for all v � K if and only if u =
Tu. As the operator T satisfies all the hypotheses of theorem 2.2 by taking A = B =
K and G = �. We conclude that theorem 3.3 hold true as an instant consequence of
theorem 2.2. Similarly for the part(b), we obtain a unique fixed point by considering
G=�, �=1,�=�=�=L=0.

Example 3.4 In the example 2.4 if we take A = B = {(0, x): -1< x <1} then we
obtain a fixed point (0,1).
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