GENERALIZED (F, ρ) - CONVEXITY AND DUALITY THEOREM FOR NONDIFFERENTIABLE PROGRAMS INVOLVING SQUARE ROOT TERMS

Ramesh K. Budhraja and Narender Kumar

Abstract

A Multi Objective Programming Problem in which each of the objective function is the sum of a nondifferentiable function and a term involving square root of a positive semi-definite quadratic form. Duality results are proved under (F, p)- convexity assumptions on functions involved. Later fractional versions of above problem are studied with different dual problems and duality theorem are proved.

1. INTRODUCTION

Bhatia and Jain [7] established duality results under F - convexity assumptions for a scalar nonlinear program of which the objective function is the sum of a nondifferentiable function and a term involving square root of a positive semidefinite quadratic form. The idea is extended to the following multi objective programming problem:
(P) \quad Minimize $\theta(x)=\left(f_{1}(x)+\left(x^{t} B_{1} x\right)^{1 / 2}, f_{2}(x)+\left(x^{t} B_{2} x\right)^{1 / 2}+\ldots f_{k}(x)+\left(x^{t} B_{k} x\right)^{1 / 2}\right)^{1}$ subject to

$$
\begin{array}{ll}
\mathrm{g}_{\mathrm{j}}(\mathrm{x})< & \mathrm{j}=1,2, \ldots, \mathrm{~m} \\
\mathrm{x} \in \mathrm{X}
\end{array}
$$

where X is an open convex subset of $\mathbf{R}^{n} ; f_{i} ; i=1,2, \ldots, k ; g_{j}, j=1,2, \ldots, m$ are real valued functions defined on X and $\mathrm{B}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{k}$ are n ' n symmetric positive semi-definite matrices.

Mond Weir type dual to (P) is introduced and duality results are established under (F, p) - convexity assumptions. These results are then extended for the following multi objective fractional program (FP):
(FP)

$$
\text { Minimize } \frac{\theta(x)}{h(x)}=\left(\frac{f_{1}(x)+\left(x^{t} B_{1} x\right)^{1 / 2}}{h_{1}(x)}, \ldots, \frac{f_{k}(x)+\left(x^{k} B_{k} x\right)^{1 / 2}}{h_{k}(x)}\right)^{t}
$$

subject to

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{j}}(\mathrm{x})<0, \quad \mathrm{j}=1,2, \ldots, \mathrm{~m} \\
& \mathrm{x} \in \mathrm{X}
\end{aligned}
$$

where $f_{i}, h_{i}, i=1,2, \ldots, k ; g_{j}, j=1,2, \ldots, m$ are real valued functions defined on an open convex subset X of \mathbf{R}^{n} with $\mathrm{f}_{\mathrm{i}}(.) \stackrel{>}{=} \mathrm{h}_{\mathrm{i}}()>.0 ; \mathrm{i}=1,2, \ldots, \mathrm{k} ; \mathrm{B}_{\mathrm{i}}, \mathrm{i}=1,2$, .., k are $\mathrm{n} \times \mathrm{n}$ symmetric positive semi-definite matrices.

Assumption (A)

The convex sets ri (dom $\left.f_{i}\right)$; ri $\left(\operatorname{dom}\left(x^{t} B_{i} x\right)^{1 / 2}\right), i=1,2, \ldots, k$ have a point in common so that

$$
\partial\left(\mathrm{f}_{\mathrm{i}}(\mathrm{x})+\left(\mathrm{x}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{x}\right)^{1 / 2}\right)=\partial \mathrm{f}_{\mathrm{i}}(\mathrm{x})+\partial\left(\mathrm{x}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{x}\right)^{1 / 2} \forall \mathrm{x} \text { and } \forall \mathrm{i}=1,2, \ldots, \mathrm{k} .
$$

Assumption (B)

We assume the following constraint qualification of Slater's type:
(i) Let x^{0} be an efficient solution of (P). For each $r \in\{1,2, \ldots, k\}$, suppose that there exists $x^{r} \in X$ such that

$$
\begin{array}{ll}
\mathrm{g}_{\mathrm{j}}\left(\mathrm{x}^{r}\right)<0 & \forall \mathrm{j}=1,2, \ldots ., \mathrm{m} \text { and } \\
\theta_{\mathrm{i}}\left(\mathrm{x}^{r}\right)<\theta_{\mathrm{i}}\left(\mathrm{x}^{0}\right) & \forall \mathrm{i} \neq \mathrm{r},
\end{array}
$$

where $\quad \theta_{\mathrm{i}}(\mathrm{x})=\mathrm{f}_{\mathrm{i}}(\mathrm{x})+\left(\mathrm{x}^{\mathrm{t}} \mathrm{B}_{\mathrm{i}} \mathrm{x}\right)^{1 / 2}, \quad \mathrm{i}=1,2, \ldots, \mathrm{k}$.
(ii) Let x^{0} be an efficient solution of (FP). For each $\mathrm{r} \in\{1,2, \ldots, \mathrm{k}\}$, suppose that there exists $x^{r} \in X$ such that

$$
\mathrm{g}_{\mathrm{j}}\left(\mathrm{x}^{\mathrm{r}}\right)<0 \quad \forall \mathrm{j}=1,2, \ldots, \mathrm{~m} ; \quad \text { and }
$$

either

$$
\begin{array}{ll}
\theta_{\mathrm{i}}\left(\mathrm{x}^{\mathrm{r}}\right)<\theta_{\mathrm{i}}\left(\mathrm{x}^{0}\right) & \forall \mathrm{i} \neq \mathrm{r} \\
\mathrm{~h}_{\mathrm{i}}\left(\mathrm{x}^{\mathrm{r}}\right)>\mathrm{h}_{\mathrm{i}}\left(\mathrm{x}^{0}\right) & \forall=1,2, \ldots, \mathrm{k}
\end{array}
$$

or

$$
\begin{array}{ll}
\theta_{\mathrm{i}}\left(\mathrm{x}^{r}\right)<\theta_{\mathrm{i}}\left(\mathrm{x}^{0}\right) & \forall=1,2, \ldots, k \\
\mathrm{~h}_{\mathrm{i}}\left(\mathrm{x}^{r}\right)>\mathrm{h}_{\mathrm{i}}\left(\mathrm{x}^{0}\right), & \mathrm{i} \neq \mathrm{r} \\
\left(\theta_{\mathrm{i}}(x)=\mathrm{f}_{\mathrm{i}}(\mathrm{x})+\left(\mathrm{x}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{x}\right)^{1 / 2}, \quad \mathrm{i}=1,2, \ldots, \mathrm{k}\right)
\end{array}
$$

Kanniappan [11] established that the following Kuhn Tucker type conditions (correct
version by B. Lemaire (Math. Reviews \# 90150, 1984)) and Fritz John type conditions are necessary for x^{0} to be an efficient solution of (P).

Theorem A (Kuhn Tucker type necessary conditions)

If x^{0} is an efficient solution of (P) and if we assume the above constraint qualification of Slater's type (B) (i), then there exist $\alpha^{0}=\left(\alpha_{1}^{0}, \alpha_{2}^{0}, \ldots, \alpha_{k}^{0}\right) \in \mathbf{R}^{k}$ and $\lambda^{0}=\left(\lambda_{1}^{0} \lambda_{2}^{0} \ldots \lambda_{\mathrm{m}}^{0}\right) \in \mathbf{R}^{\mathrm{m}}$, such that

$$
\begin{aligned}
& \lambda_{\mathrm{j}}^{0} \mathrm{~g}_{\mathrm{j}}\left(\mathrm{x}^{0}\right)=0, \quad \mathrm{j}=1,2, \ldots, \mathrm{~m}, \\
& 0 \in \sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}}^{0} \partial \theta_{\mathrm{i}}\left(\mathrm{x}^{0}\right)+\sum_{\mathrm{j}=1}^{\mathrm{n}} \lambda_{\mathrm{j}}^{0} \partial \mathrm{~g}_{\mathrm{j}}\left(\mathrm{x}^{0}\right)+\mathrm{N}_{\mathrm{x}}\left(\mathrm{x}^{0}\right) \\
& \alpha_{\mathrm{i}}^{0}>0, \quad \mathrm{i}=1,2, \ldots, \mathrm{k} ; \quad \lambda_{\mathrm{j}}^{0} \underset{=}{>}, \mathrm{j}=1,2, \ldots, \mathrm{~m} .
\end{aligned}
$$

Theorem B (Fritz John type necessary conditions)

If x^{0} is an efficient solution of (P), then there exist $\alpha^{0}=\left(\alpha_{1}^{0}, \alpha_{2}^{0}, \ldots, \alpha_{k}^{0}\right) \in \mathbf{R}^{k}$, $\lambda^{0}=\left(\lambda_{1}^{0}, \lambda^{0}, \ldots, \lambda_{\mathrm{m}}^{0}\right) \in \mathbf{R}^{\mathrm{m}}$, such that

$$
\begin{aligned}
& \lambda_{\mathrm{j}}^{0} \mathrm{~g}_{\mathrm{j}}\left(\mathrm{x}^{0}\right)=0, \quad \mathrm{j}=1,2, \ldots, \mathrm{~m} \\
& 0 \in \sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}}^{0} \partial \theta_{\mathrm{i}}\left(\mathrm{x}^{0}\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}}^{0} \partial \mathrm{~g}_{\mathrm{j}}\left(\mathrm{x}^{0}\right)+\mathrm{N}_{\mathrm{x}}\left(\mathrm{x}^{0}\right) \\
& \left(\alpha^{0}, \lambda^{0}\right) \geq 0
\end{aligned}
$$

The following results are needed in the sequel.

Lemma 1 [10]

Let $\phi(x)=\left(x^{t} B x\right)^{1 / 2}$, B is a positive semi-definite symmetric matrix. Then $\phi(x)$ is convex and $w \partial \phi(x)$ if and only if $w=B z, z^{t} B z<1, x^{t} B z=\left(x^{t} B x\right)^{1 / 2}$.

Lemma 2 [7]
Let $\phi(x)=\left(x^{t} B x\right)^{1 / 2}$. Then $\phi(x)$ is locally Lipschitz.
Throughout the paper, we shall assume that $f_{i},-h_{i} ; i=1,2, \ldots, k$ and $g_{j}, j=1,2$, . ., m are Lipschitz and regular, and the set X is an open convex subset of \mathbf{R}^{n}.
Mond Weir type dual for the problem (P) is
(D) Maximize $H(u, \alpha, \lambda, z)=\left(f_{1}(u)+u^{t} B_{i} z_{i}, \ldots, f_{k}(u)+u^{t} B_{k} z_{k}\right)^{t}$
subject to

$$
\begin{gather*}
0 \in \sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}}\left(\partial \mathrm{f}_{\mathrm{i}}(\mathrm{u})+\mathrm{B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \partial \mathrm{~g}_{\mathrm{j}}(\mathrm{u})+\mathrm{N}_{\mathrm{x}}(\mathrm{u}) \tag{1}\\
\lambda_{\mathrm{j}} \mathrm{~g}_{\mathrm{j}}(\mathrm{u}) \xrightarrow{>} 0, \quad \mathrm{j}=1,2, \ldots, \mathrm{~m} \tag{2}\\
\mathrm{z}_{\mathrm{i}}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}<1, \quad \mathrm{i}=1,2, \ldots, \mathrm{k} \tag{3}\\
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{k}}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{m}}\right) \geq 0 \tag{4}
\end{gather*}
$$

Theorem 1 (Weak Duality)

Let x be feasible for (P) and ($\mathrm{u}, \alpha, \lambda, \mathrm{z}$) be feasible for (D). Assume that the functions $\mathrm{f}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{k} ; \mathrm{g}_{\mathrm{j}} \mathrm{j}=1,2, \ldots, \mathrm{~m} ;(.-\mathrm{x})^{\mathrm{t}} \mathrm{B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\left(\forall \mathrm{z}_{\mathrm{i}} \in \mathbf{R}^{\mathrm{n}}\right), \mathrm{i}=1,2, \ldots$, $\mathrm{k},(.-\mathrm{x})^{\mathrm{t}} \mathrm{u}^{*}\left(\forall \mathrm{u}^{*} \in \mathrm{~N}_{\mathrm{x}}(\mathrm{u})\right)$ are F-convex and assume that a >0.

Then

$$
\theta(\mathrm{x}) \not \pm \mathrm{H}(\mathrm{u}, \alpha, \lambda, \mathrm{z}) .
$$

Proof. Since (u, α, λ, z) is feasible for (D), we have

$$
0=\sum_{i=1}^{k} \alpha_{i}\left(\xi_{i}+B_{i} z_{i}\right)+\sum_{j=1}^{m} \lambda_{j} \eta_{j}+u^{*}
$$

where $\xi_{\mathrm{i}} \in \partial \mathrm{f}_{\mathrm{i}}(\mathrm{u}), \mathrm{i}=1,2, \ldots, \mathrm{k} ; \eta_{\mathrm{j}} \in \partial \mathrm{g}_{\mathrm{j}}(\mathrm{u}), \mathrm{j}=1,2, \ldots, \mathrm{~m}$ and $\mathrm{u}^{*} \in \mathrm{~N}_{\mathrm{x}}(\mathrm{u})$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{F}\left(\mathrm{x}, \mathrm{u} ; \sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}}\left(\xi_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \eta_{\mathrm{j}}+\mathrm{u}^{*}\right)=0 \tag{5}
\end{equation*}
$$

Again Since the functions $f_{i}, i=1,2, \ldots, k ; g_{j}, j=1,2, \ldots, m ;(.-x)^{{ }^{t}} B_{i} z_{i}$, $\mathrm{I}=1,2, \ldots, \mathrm{k}$ and $(.-\mathrm{x})^{\mathrm{t}} \mathrm{u}^{*}$ are F - convex, $\mathrm{a}<0, \lambda>0$, we have

$$
\begin{aligned}
& \sum_{i=1}^{\mathrm{k}} \alpha_{i}\left(\mathrm{f}_{\mathrm{i}}(\mathrm{x})-\mathrm{f}_{\mathrm{i}}(\mathrm{u})\right) \xrightarrow{2} \sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}} \mathrm{~F}\left(\mathrm{x}, \mathrm{u} ; \xi_{\mathrm{i}}\right) \\
& \sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}}\left(\mathrm{~g}_{\mathrm{j}}(\mathrm{x})-\mathrm{g}_{\mathrm{j}}(\mathrm{u})\right) \geq \sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \mathrm{~F}\left(\mathrm{x}, \mathrm{u} ; \eta_{\mathrm{j}}\right) \\
& \sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}}(\mathrm{x}-\mathrm{u})^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}>\sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}} \mathrm{~F}\left(\mathrm{x}, \mathrm{u} ; \mathrm{B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right) \\
& (\mathrm{x}-\mathrm{u})^{\mathrm{t}} \mathrm{u}^{*} \geq \mathrm{F}\left(\mathrm{x}, \mathrm{u} ; \mathrm{u}^{*}\right)
\end{aligned}
$$

Adding the above four inequalities and using the definition of sublinear function, we get

$$
\begin{align*}
& \sum_{i=1}^{k} \alpha_{i}\left(f_{i}(x)-f_{i}(u)+(x-u)^{t} B_{i} z_{i}\right) \\
& +\sum_{j=1}^{m} \lambda_{j}\left(g_{j}(x)-g_{j}(u)\right)+(x-u)^{t} u^{*} \\
& >=F\left(x, u ; \sum_{i=1}^{k} \alpha_{i}\left(\xi_{i}+B_{i} z_{i}\right)+\sum_{j=1}^{m} \lambda_{j} \eta_{j}+u^{*}\right) \\
& =0(b y \operatorname{using}(5)) \tag{6}
\end{align*}
$$

Now, consider

$$
\begin{align*}
& \alpha^{\mathrm{t}}(\theta(\mathrm{x})-\mathrm{H}(\mathrm{u}, \alpha, \lambda, \mathrm{z})) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}(\mathrm{x})+\left(\mathrm{x}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{x}\right)^{1 / 2}-\mathrm{f}_{\mathrm{i}}(\mathrm{u})-\mathrm{u}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right) \\
& >\sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}(\mathrm{x})-\mathrm{f}_{\mathrm{i}}(\mathrm{u})+\left(\mathrm{x}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{x}\right)^{1 / 2}\left(\mathrm{z}_{\mathrm{i}}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)^{1 / 2}-\mathrm{u}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right) \tag{3}\\
& >\sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}(\mathrm{x})-\mathrm{f}_{\mathrm{i}}(\mathrm{u})+(\mathrm{x}-\mathrm{u})^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)
\end{align*}
$$

(using Schwarz's inequality)

$$
\begin{align*}
& >-\sum_{j=1}^{m} \lambda_{j}\left(g_{j}(x)-g_{j}(u)\right)-(x-u)^{t} u^{*} \tag{6}\\
& >0 .
\end{align*}
$$

The last inequality holds because of $u^{*} \in N_{x}(u)$, feasibility of x for (P), (2) and (4).
Hence $\alpha^{\mathrm{t}} \theta(\mathrm{x})>\alpha^{\mathrm{t}} \mathrm{H}(\mathrm{u}, \alpha, \lambda, \mathrm{z})$ and thus

$$
\theta(\mathrm{x}) \not \leq \mathrm{H}(\mathrm{u}, \alpha, \lambda, \mathrm{z})
$$

Theorem 2 (Strong Duality)

Let x^{0} be an efficient solution of (P) then there exist $\alpha^{0} \in \mathbf{R}^{k}, \lambda^{0} \in \mathbf{R}^{\mathrm{n}}$, $z^{0}=\left(z_{1}^{0}, z_{2}^{0}, \ldots, z_{k}^{0}\right)$ such that $\left(x^{0}, \alpha^{0}, \lambda^{0}, z^{0}\right)$ is feasible for (D) and the two problems have the same extremal values. Further, if the conditions of Weak Duality Theorem 1 hold then $\left(\mathrm{x}^{0}, \alpha^{0}, \lambda^{0}, \mathrm{z}^{0}\right)$ is properly efficient for (D).

Proof. Since x^{0} is efficient for (P), so by Theorem B, there exist $\alpha^{0}=\left(\alpha_{1}^{0} \alpha_{2}^{0} \ldots \alpha_{k}^{0}\right) \in \mathbf{R}^{\mathrm{k}}, \lambda^{0}=\left(\lambda_{1}^{0} \lambda_{2}^{0} \ldots \lambda_{m}^{0}\right) \in \mathbf{R}^{\mathrm{m}}$ such that

$$
\begin{gather*}
\lambda_{j}^{0} g_{j}\left(x^{0}\right)=0, \quad j=1,2, \ldots, m \\
0 \in \sum_{i=1}^{k} \alpha_{i}^{0} \partial \theta_{i}\left(x^{0}\right)+\sum_{j=1}^{m} \lambda_{j}^{0} \partial g_{j}\left(x^{0}\right)+N_{x}\left(x^{0}\right) \tag{7}\\
\left(\alpha^{0}, \lambda^{0}\right) \geq 0
\end{gather*}
$$

Under Assumption A, condition (7) reduces to
where $\mathrm{z}_{\mathrm{i}}^{0} \in \mathbf{R}^{\mathrm{n}}, \mathrm{z}_{\mathrm{i}}^{0^{0}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}^{0} \stackrel{=1}{\underline{1}}, \quad \mathrm{x}^{0^{0}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}^{0}=\left(\mathrm{x}^{0^{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{x}^{0}\right)^{1 / 2}, \forall \mathrm{i}=1,2, \ldots, \mathrm{k}$
These conditions show that ($\mathrm{x}^{0}, \alpha^{0}, \lambda^{0}, \mathrm{z}^{0}$) is feasible for (D). Further, since $x^{0^{\prime}} B_{i} z_{i}^{0}=\left(x^{0^{0}} B_{i} x^{0}\right)^{1 / 2}, i=1,2, \ldots, k$, the two problems have the same extremal values, so by a result from [2] and Weak Duality Theorem, ($x^{0}, \alpha^{0}, \lambda^{0}, z^{0}$) is properly efficient for (D).

For fractional programming problem (FP) we establish duality results between (FP) and Bhatia and Pandev [8] type of dual under the assumptions of generalized (F,r) - convexity.

Bhatia and Pandey [8] type of dual for (FP) is
(FD) Maximize $\frac{\beta}{\alpha}=\left(\frac{\beta_{1}}{\alpha_{1}}, \frac{\beta_{2}}{\alpha_{2}}, \ldots, \frac{\beta_{\mathrm{k}}}{\alpha_{\mathrm{k}}}\right)^{t}$
subject to

$$
\begin{align*}
& 0 \in \sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\alpha_{\mathrm{i}}\left(\partial \mathrm{f}_{\mathrm{i}}(\mathrm{u})+\mathrm{B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)-\beta_{\mathrm{i}} \partial \mathrm{~h}_{\mathrm{i}}(\mathrm{u})\right) \\
& +\sum_{j=1}^{m} \lambda_{j} \partial g_{j}(u)+N_{x}(u) \tag{8}\\
& \sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\alpha_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}(\mathrm{u})+\mathrm{u}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)-\beta_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}}(\mathrm{u})\right) \geq 0 \tag{9}\\
& \lambda^{\mathrm{t}} \mathrm{~g}(\mathrm{u})>0 \tag{10}\\
& \mathrm{z}_{\mathrm{i}}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}<1, \quad \mathrm{i}=1,2, \ldots, \mathrm{k} \tag{11}\\
& \alpha=\left(\alpha_{1} \alpha_{2} \ldots \alpha_{k}\right)>0, \quad \alpha^{\mathrm{t}} \mathrm{e}=1 \tag{12}\\
& \beta=\left(\beta_{1} \beta_{2} \ldots \beta_{\mathrm{k}}\right) \geqslant 0, \quad \lambda=\left(\lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{m}}\right) \geqslant 0 . \tag{13}
\end{align*}
$$

Theorem 3 (Weak Duality)

Suppose for feasible x to (FP) and feasible $(u, \alpha, \beta, \lambda, z)$ to (FD)
(i) f_{i} is $\left(\mathrm{F}, \rho_{1 \mathrm{i}}\right)$ - convex; $\quad \mathrm{i}=1,2, \ldots, \mathrm{k}$,
(ii) $-\mathrm{h}_{\mathrm{i}}$ is $\left(\mathrm{F}, \mathrm{\rho}_{2 \mathrm{i}}\right)$ - convex; $\mathrm{i}=1,2, \ldots, \mathrm{k}$,
(iii) g_{j} is $\left(F, \rho_{3 j}\right)$ - convex; $j=1,2, \ldots, m$,
(iv) $(.-x)^{t} B_{i} \mathrm{Z}_{\mathrm{i}}$ is $\left(\mathrm{F}, \rho_{4 \mathrm{i}}\right)$ - convex; $\quad \forall \mathrm{Z}_{\mathrm{i}} \in \mathbf{R}^{\mathrm{n}}, \mathrm{i}=1,2, \ldots, \mathrm{k}$,
(v) $(.-\mathrm{x})^{\mathrm{t}} \mathrm{u}^{*}$ is $\left(\mathrm{F}, \mathrm{\rho}^{*}\right)$ - convex; $\quad \forall \mathrm{u}^{*} \in \mathrm{~N}_{\mathrm{x}}(\mathrm{u}) \quad$ and
(vi) $\sum_{i=1}^{k}\left(\alpha_{i} \rho_{1 i}+\beta_{i} \rho_{2 i}+\alpha_{i} \rho_{4 i}\right)+\sum_{j=1}^{m} \lambda_{j} \rho_{3 j}+\rho^{*} \underset{=}{>}$.

Then $\quad \frac{\theta(\mathrm{x})}{\mathrm{h}(\mathrm{x})} \nsubseteq \frac{\beta}{\alpha}$.
Proof. The constraint (8) ensures the existence of $\xi_{i} \in \partial \mathrm{f}_{\mathrm{i}}(\mathrm{u}) ; \eta_{\mathrm{i}} \in \partial \mathrm{h}_{\mathrm{i}}(\mathrm{u})$, $\mathrm{i}=1,2, \ldots, \mathrm{k} ; \psi_{\mathrm{j}} \in \partial \mathrm{g}_{\mathrm{j}}(\mathrm{u}), \mathrm{j}=1,2, \ldots, \mathrm{~m} ; \mathrm{u}^{*} \in \mathrm{~N}_{\mathrm{x}}(\mathrm{u})$ such that

$$
0=\sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\alpha_{\mathrm{i}}\left(\xi_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \psi_{\mathrm{j}}+\mathrm{u}^{*}
$$

and hence

$$
\begin{equation*}
\mathrm{F}\left(\mathrm{x}, \mathrm{u} ; \sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\alpha_{\mathrm{i}}\left(\xi_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)-\beta_{\mathrm{i}} \eta_{\mathrm{i}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \psi_{\mathrm{j}}+\mathrm{u}^{*}\right)=0 \tag{14}
\end{equation*}
$$

Now suppose, on the contrary,

$$
\frac{\theta(x)}{h(x)} \leq \frac{\beta}{\alpha}
$$

i.e. $\frac{\mathrm{f}_{1}(\mathrm{x})+\left(\mathrm{x}^{\mathrm{t}} \mathrm{B}_{1}(\mathrm{x})^{1 / 2}\right.}{\mathrm{h}_{1}(\mathrm{x})}<\frac{\beta_{\mathrm{i}}}{\alpha_{\mathrm{i}}} \quad \forall \mathrm{i}=1,2, \ldots, \mathrm{k}$,
and $\frac{\mathrm{f}_{\mathrm{r}}(\mathrm{x})+\left(\mathrm{x}^{\mathrm{t}} \mathrm{B}_{\mathrm{r}} \mathrm{x}\right)^{1 / 2}}{\mathrm{~h}_{\mathrm{r}}(\mathrm{x})}<\frac{\beta_{\mathrm{r}}}{\alpha_{\mathrm{r}}}$ for some $\mathrm{r} \in\{1,2, \ldots, \mathrm{k}\}$
$\Rightarrow \quad \alpha_{\mathrm{i}}\left(\mathrm{f}_{1}(\mathrm{x})+\left(\mathrm{x}^{\mathrm{t}} \mathrm{B}_{\mathrm{i}} \mathrm{x}\right)^{1 / 2}\right)-\beta_{\mathrm{i}} \mathrm{h}_{\mathrm{i}}(\mathrm{x})<0 \quad \forall \mathrm{i}=1,2, \ldots, \mathrm{k}$,
and $\alpha_{r}\left(f_{r}(x)+\left(x^{t} B_{r} x\right)^{1 / 2}\right)-\beta_{r} h_{r}(x)<0$ for some $r \in\{1,2, \ldots, k\}$
Adding the above inequalities over $\mathrm{i}=1,2, \ldots, \mathrm{k}$, we get

$$
\sum_{i=1}^{k}\left(\alpha_{i}\left(f_{i}(x)+\left(x^{t} B_{i} x\right)^{1 / 2}\right)-\beta_{i} h_{i}(x)\right)<0
$$

This inequality, together with (9), gives

$$
\begin{align*}
& \sum_{i=1}^{k}\left(\alpha_{i}\left(f_{i}(x)+\left(x^{t} B_{i} x\right)^{1 / 2}\right)-\beta_{i} h_{i}(x)\right) \\
& <\sum_{i=1}^{k}\left(\alpha_{i}\left(f_{i}(u)+u^{t} B_{i} z_{i}\right)-\beta_{i} h_{i}(u)\right) \\
& \Rightarrow \quad \sum_{i=1}^{k} \alpha_{i}\left(f_{i}(x)-f_{1}(u)\right)-\sum_{i=1}^{k} \beta_{i}\left(h_{i}(x)-h_{i}(u)\right) \\
& <\sum_{i=1}^{k} \alpha_{i}\left(u^{t} B_{i} z_{i}-\left(x^{t} B_{i} x\right)^{1 / 2}\right) \tag{15}
\end{align*}
$$

In view of assumptions (i) to (v), (12) and (13), we have

$$
\begin{aligned}
& \sum_{i=1}^{k} \alpha_{i}\left(f_{i}(x)-f_{i}(u)\right) \gg \sum_{i=1}^{k} \alpha_{i} F\left(x, u, \xi_{i}\right)+\sum_{i=1}^{k} \alpha_{i} \rho_{\mathrm{li}} d^{2}(x, u) \\
& -\sum_{i=1}^{k} \beta_{i}\left(h_{i}(x)-h_{i}(u)\right) \underset{=}{>} \sum_{i=1}^{k} \beta_{i} F\left(x, u ;-\eta_{i}\right)+\sum_{i=1}^{k} \beta_{i} \rho_{2 i} d^{2}(x, u) \\
& \sum_{j=1}^{m} \lambda_{j}\left(g_{j}(x)-g_{j}(u)\right) \underset{=}{>} \sum_{j=1}^{m} \lambda_{j} F\left(x, u ; \psi_{j}\right)+\sum_{j=1}^{m} \lambda_{j} \rho_{3 j} d^{2}(x, u) \\
& \sum_{i=1}^{k} \alpha_{i}(x-u)^{t} B_{i} z_{i} \xrightarrow[=]{>} \sum_{i=1}^{k} \alpha_{i} F\left(x, u ; B_{i} z_{i}\right)+\sum_{i=1}^{k} \alpha_{i} \rho_{4 i} d^{2}(x, u) \\
& (x-u)^{t} u^{*}>F\left(x, u ; u^{*}\right)+\rho^{*} d^{2}(x, u)
\end{aligned}
$$

Adding the above five inequalities and using sub-linearity of F , we have

$$
\begin{aligned}
& \sum_{i=1}^{k} \alpha_{i}\left(f_{i}(x)-f_{i}(u)\right)-\sum_{i=1}^{k} \beta_{i}\left(h_{i}(x)-h_{i}(u)\right) \\
& +\sum_{j=1}^{m} \lambda_{j}\left(g_{j}(x)-g_{j}(u)\right)+\sum_{i=1}^{k} \alpha_{i}(x-u)^{t} B_{i} z_{i}+(x-u)^{t} u^{*}
\end{aligned}
$$

$$
\begin{align*}
& >P\left(\mathrm{x}, \mathrm{u} ; \sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\alpha_{\mathrm{i}}\left(\xi_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)-\beta_{\mathrm{i}} \eta_{\mathrm{i}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \psi_{\mathrm{j}}+\mathrm{u}^{*}\right) \\
& +\left(\sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\alpha_{\mathrm{i}} \rho_{\mathrm{li}}+\beta_{\mathrm{i}} \rho_{2 \mathrm{i}}+\alpha_{\mathrm{i}} \rho_{4 \mathrm{i}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \rho_{3 \mathrm{j}}+\rho^{*}\right) \mathrm{d}^{2}(\mathrm{x}, \mathrm{u}) \tag{16}
\end{align*}
$$

or

$$
\begin{aligned}
& F\left(x, u ; \sum_{i=1}^{k}\left(\alpha_{i}\left(\xi_{i}+\beta_{i} z_{i}\right)-\beta_{i} \eta_{i}\right)+\sum_{j=1}^{m} \lambda_{j} \psi_{j}+u^{*}\right) \\
& <\sum_{i=1}^{k} \alpha_{i}\left(u^{t} B_{i} z_{i}-\left(x^{t} B_{i} x\right)^{1 / 2}\right)+\sum_{j=1}^{m} \lambda_{j}\left(g_{j}(x)-g_{j}(u)\right) \\
& +\sum_{i=1}^{k} \alpha_{i}(x-u)^{t} B_{i} z_{i}+(x-u)^{t} u^{*}
\end{aligned}
$$

(by assumption (vi), (15) and definition of pseudo-metric)

$$
\leqq \sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}}\left(-\left(\mathrm{x}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{x}\right)^{1 / 2}\left(\mathrm{z}_{\mathrm{i}}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)^{1 / 2}\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \mathrm{~g}_{\mathrm{j}}(\mathrm{x})+\sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}} \mathrm{x}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}} \quad \text { (by (10), (11) and }
$$

the fact that $\mathrm{u}^{*} \mathrm{~N}_{\mathrm{x}}(\mathrm{u})$)

$$
\underset{=}{<-} \sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}} \mathrm{X}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \mathrm{~g}_{\mathrm{j}}(\mathrm{x})+\sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}} \mathrm{x}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}
$$

(By Schwarz's Inequality)

$$
\begin{aligned}
& =\sum_{j=1}^{m} \lambda_{\mathrm{j}} \mathrm{~g}_{\mathrm{j}}(\mathrm{x}) \\
& <0,(\text { by feasibility of } \mathrm{x} \text { for }(\mathrm{FP}) \text { and (13) })
\end{aligned}
$$

i.e. $F\left(x, u ; \sum_{i=1}^{k}\left(\alpha_{i}\left(\xi_{i}+B_{i} z_{i}\right)-\beta_{i} \eta_{i}\right)+\sum_{j=1}^{m} \lambda_{j} \psi_{j}+u^{*}\right)<0$
a contradiction to (14).
Hence

$$
\frac{\theta(\mathrm{x})}{\mathrm{h}(\mathrm{x})} \pm \frac{\beta}{\alpha} .
$$

Theorem 4 (Strong Duality)

Let x^{0} be an efficient solution of (FP) and assume that the Slater's type constraint qualification Assumption $B(i i)$ is satisfied at x^{0}, then there exist $\alpha^{0}=\left(\alpha_{1}^{0} \alpha_{2}^{0} \ldots \alpha_{k}^{0}\right) \in \mathbf{R}^{k}$, $\beta^{0}=\left(\beta_{1}^{0} \beta_{2}^{0} \ldots \beta_{\mathrm{k}}^{0}\right) \in \mathbf{R}^{\mathrm{k}}, \lambda^{0}=\left(\lambda_{1}^{0} \lambda_{2}^{0} \ldots \lambda_{\mathrm{m}}^{0}\right) \in \mathbf{R}^{\mathrm{m}}$ and $\mathrm{z}^{0}=\left(\mathrm{z}_{1}^{0} \mathrm{z}_{2}^{0}, \ldots, \mathrm{z}_{\mathrm{k}}^{0}\right)$ with each $z_{i}^{0} \in \mathbf{R}^{n}$ such that $\left(\mathrm{x}^{0}, \alpha^{0}, \beta^{0}, \lambda^{0}, \mathrm{z}^{0}\right)$ is efficient for (FD).

Proof. Since x^{0} is efficient for (FP), so it is efficient for the following multi-objective program [5] :
(EP) Minimize $\left(f_{1}(x)+\left(x^{t} B_{1} x\right)^{1 / 2}, \ldots, f_{k}(x)+\left(x^{t} B_{k} x\right)^{1 / 2},-h_{1}(x), \ldots,-h_{k}(x)\right)^{t}$
subject to

$$
\begin{gathered}
\mathrm{g}(\mathrm{x})<0 \\
\\
=0 \\
\mathrm{x} \in \mathrm{X}
\end{gathered}
$$

and hence by [8], there exist scalars $\alpha_{i}>0, \beta_{i}>0, i=1,2, \ldots, k$ and $\lambda_{j}>0, j=1$, $2, \ldots$, m, satisfying

$$
\begin{align*}
& 0 \in \sum_{i=1}^{k}\left(\alpha_{i} \partial \theta_{\mathrm{i}}\left(\mathrm{x}^{0}\right)-\beta_{\mathrm{i}} \partial \mathrm{~h}_{\mathrm{i}}\left(\mathrm{x}^{0}\right)\right)+\sum_{\mathrm{i}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \partial \mathrm{~g}_{\mathrm{j}}\left(\mathrm{x}^{0}\right)+\mathrm{N}_{\mathrm{x}}\left(\mathrm{x}^{0}\right) \tag{17}\\
& \sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\alpha_{\mathrm{i}} \theta_{\mathrm{i}}\left(\mathrm{x}^{0}\right)-\beta_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}}\left(\mathrm{x}^{0}\right)\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \mathrm{~g}_{\mathrm{j}}\left(\mathrm{x}^{0}\right) \underset{=}{>} \tag{18}\\
& \lambda_{\mathrm{j}} \mathrm{~g}_{\mathrm{j}}\left(\mathrm{x}^{0}\right)=0, \quad \mathrm{j}=1,2, \ldots, \mathrm{~m} \tag{19}
\end{align*}
$$

Under Assumption (A), (17) becomes
$0 \in \sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\alpha_{\mathrm{i}}\left(\partial \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}^{0}\right)+\mathrm{B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}^{0}\right)-\beta_{\mathrm{i}} \partial \mathrm{h}_{\mathrm{i}}\left(\mathrm{x}^{0}\right)\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \partial \mathrm{g}_{\mathrm{j}}\left(\mathrm{x}^{0}\right)+\mathrm{N}_{\mathrm{x}}\left(\mathrm{x}^{0}\right)$
where $z_{i}^{0} \in \mathbf{R}^{n}, z_{i}^{0^{t}} B_{i} z_{i}^{0} \underset{=}{<}, x^{0^{t}} B_{i} z_{i}^{0}=\left(x^{0^{t}} B_{i} x^{0}\right)^{1 / 2}, i=1,2, \ldots, k$.
From (18) and (19), we have

$$
\begin{equation*}
\sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\alpha_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}^{0}\right)+\left(\mathrm{x}^{0^{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{x}^{0}\right)^{1 / 2}-\beta_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}}\left(\mathrm{x}^{0}\right)\right)>0\right. \tag{22}
\end{equation*}
$$

Dividing (19), (20) and (22) by $\sum_{i=1}^{k} \alpha_{i}>0$ and setting

$$
\begin{gathered}
\alpha_{i}^{0}=\frac{\alpha_{i}}{\sum_{i=1}^{k} \alpha_{i}}>0 ; \quad \beta_{i}^{0}=\frac{\beta_{i}}{\sum_{i=1}^{k} \alpha_{i}} ; i=1,2, \ldots, k \\
\lambda_{j}^{0}=\frac{\lambda_{j}}{\sum_{i=1}^{k} \alpha_{i}} \geq 0, \quad j=1,2, \ldots, m
\end{gathered}
$$

and using the definition of normal cone, we get

$$
\begin{align*}
& \lambda_{j}^{0} \mathrm{~g}_{\mathrm{j}}\left(\mathrm{x}^{0}\right)=0, \quad \mathrm{j}=1,2, \ldots, \mathrm{~m} \\
& 0 \in \sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\alpha_{\mathrm{i}}^{0}\left(\partial \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}^{0}\right)+\mathrm{B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}^{0}\right)-\beta_{\mathrm{i}}^{0} \partial \mathrm{~h}_{\mathrm{i}}\left(\mathrm{x}^{0}\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}}^{0} \partial \mathrm{~g}_{\mathrm{j}}\left(\mathrm{x}^{0}\right)+\mathrm{N}_{\mathrm{x}}\left(\mathrm{x}^{0}\right)\right. \\
& \sum_{i=1}^{k}\left(\alpha_{i}^{0}\left(f_{i}\left(x^{0}\right)+x^{0} B_{i} z_{i}^{0}\right)-\beta_{i}^{0} h_{i}\left(x^{0}\right) \geq 0\right. \tag{21}\\
& \alpha^{0}=\left(\alpha_{1}^{0}, \alpha_{2}^{0}, \ldots, \alpha_{k}^{0}\right)>0, \alpha^{0^{0}} \mathrm{e}=1, \\
& \beta^{0}=\left(\beta_{1}^{0} \beta_{2}^{0} \ldots \beta_{\mathrm{k}}^{0}\right) \geq 0, \lambda^{0}=\left(\lambda_{1}^{0} \lambda_{2}^{0} \ldots \lambda_{\mathrm{m}}^{0}\right) \geq 0 .
\end{align*}
$$

Also $\quad \mathrm{z}_{\mathrm{i}}^{0^{4}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}^{0} \leqq 1, \quad \mathrm{i}=1,2, \ldots, \mathrm{k}$ (by (21))

Thus ($x^{0}, \alpha^{0}, \beta^{0}, \lambda^{0}, z^{0}$) is feasible for (FD). Efficiency of ($x^{0}, \alpha^{0}, \beta^{0}, \lambda^{0}, z^{0}$) follows on the lines of proof of the Theorem 2 [8]

Theorem 5 (Strict Converse Duality)

Let x and ($\mathrm{u}, \alpha, \beta, \lambda, \mathrm{z}$) be efficient solutions to (FP) and (FD) respectively with

$$
\begin{equation*}
\frac{\theta(x)}{h(x)}=\frac{\beta}{\alpha} \tag{23}
\end{equation*}
$$

Assume, further, for all feasible solutions $\overline{\mathrm{x}}$ for (FP) and ($\bar{u}, \bar{\alpha}, \bar{\beta}, \bar{\lambda}, \bar{z})$ for (FD),
(i) f_{i} is strict $\left(F, \rho_{1 i}\right)$ - convex; $\quad i=1,2, \ldots, k$,
(ii) $-\mathrm{h}_{\mathrm{i}}$ is strict $\left(\mathrm{F}, \rho_{2 \mathrm{i}}\right)$ - convex; $\quad \mathrm{i}=1,2, \ldots, \mathrm{k}$,
(iii) g_{j} is strict $\left(F, \rho_{3 j}\right)$ - convex; $\quad j=1,2, \ldots, m$,
(iv) $(.-\overline{\mathrm{x}})^{\mathrm{t}} \mathrm{B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}$ is strict $\left(\mathrm{F}, \rho_{4 \mathrm{i}}\right)$ - convex $\quad \forall \mathrm{z}_{\mathrm{i}} \in \mathbf{R}^{\mathrm{n}}, \mathrm{i}=1,2, \ldots, \mathrm{k}$,
(v) $(.-\overline{\mathrm{x}})^{\mathrm{t}} \mathrm{u}^{*}$ is strict $\left(\mathrm{F}, \mathrm{\rho}^{*}\right)$ - convex; $\quad \forall \mathrm{u} \in \mathrm{N}_{\mathrm{x}}(\mathrm{u})$ and
(vi) $\sum_{i=1}^{k}\left(\alpha_{i} \rho_{l i}+\beta_{i} \rho_{2 i}+\alpha_{i} \rho_{4 \mathrm{i}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \rho_{3 \mathrm{j}}+\rho^{*}>0$

Then u is efficient for (FP).
Proof. It is sufficient to prove that $\mathrm{x}=\mathrm{u}$.

$$
\text { Suppose, on the contrary, } x \neq u
$$

Now, feasibility of ($u, \alpha, \beta, \lambda, z$), as in the proof of Theorem (3), gives the relation (14) viz.

$$
\mathrm{F}\left(\mathrm{x}, \mathrm{u} ; \sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\alpha_{\mathrm{i}}\left(\xi_{\mathrm{i}}-\beta_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)-\beta_{\mathrm{i}} \eta_{\mathrm{i}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{j} \psi_{\mathrm{j}}+\mathrm{u}^{*}\right)=0
$$

Again, as in the proof of Theorem (3), assumptions (i) to (v) lead to inequality (16) which reduces to (using (9), (10) and (23))

$$
\begin{gathered}
F\left(x, u ; \sum_{i=1}^{k}\left(\alpha_{i}\left(\xi_{i}+B_{i} z_{i}\right)-\beta_{i} \eta_{i}\right)+\sum_{j=1}^{m} \lambda_{j} \psi_{j}+u^{*}\right) \\
+\left(\sum_{i=1}^{k}\left(\alpha_{i} \rho_{l i}+\beta_{i} \rho_{2 i}+\alpha_{i} \rho_{4 i}\right)+\sum_{j=1}^{m,} \lambda_{j} \rho_{3 j}+\rho^{*}\right) d^{2}(x, u) \\
<-\sum_{i=1}^{k} \alpha_{i}\left(x^{t} B_{i} x\right)^{1 / 2}+\sum_{i=1}^{k} \alpha_{i}\left(u^{t} B_{i} z_{i}\right)+\sum_{j=1}^{m} \lambda_{j} g_{j}(x) \\
+\sum_{i=1}^{k} \alpha(x-u)^{t} B_{i} z_{i}+(x-u)^{t} u^{*} \\
<-\sum_{i=1}^{k} \alpha_{i}\left(x^{t} B_{i} x\right)^{1 / 2}\left(z_{i}^{t} B_{i} z_{i}\right)^{1 / 2}+\sum_{j=1}^{m} \lambda_{j} g_{j}(x)+\sum_{i=1}^{k} \alpha_{i}\left(x^{t} B_{i} z_{i}\right)
\end{gathered}
$$

(by (11) and $(\mathrm{x}-\mathrm{u})^{\mathrm{t}} \mathrm{u}^{*} \stackrel{<}{=}$, as $\mathrm{u}^{*} \in \mathrm{~N}_{\mathrm{x}}(\mathrm{u})$)

$$
\leqq-\sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}}\left(\mathrm{x}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \mathrm{~g}_{\mathrm{j}}(\mathrm{x})+\sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}}\left(\mathrm{x}^{\mathrm{t}} \mathrm{~B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)
$$

(using Schwarz 's Inequality)
$\stackrel{<}{=}$, by feasibility of x for (FP) and (13).

Hence, by assumption (vi) and definition of strict pseudo-metric, we have

$$
\mathrm{F}\left(\mathrm{x}, \mathrm{u} ; \sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\alpha_{\mathrm{i}}\left(\xi_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right)-\beta_{\mathrm{i}} \eta_{\mathrm{i}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{m}} \lambda_{\mathrm{j}} \psi_{\mathrm{j}}+\mathrm{u}^{*}\right)<0
$$

This contradicts (14) and hence $u=x$.

ACKNOWLEDGEMENT

The Authors thank Professor R.N. Kaul, University of Delhi, for his valuable guidance throughout the preparation of this paper.

REFERENCES

1. Aggarwal, S.P. and Saxena, P.C. (1979). A class or Fractional Functional Programming Problem, New Zealand operations Research, 7 (1), 79-90.
2. Bector, C. R. and Chandra, S. (1987), Multiobjective Fractional Duality-A Parametric Approach, Research Report, Faculty of management, Univ. of Manitoba.
3. Bhatia, D. (1970), A Note on a Duality Theorem for Nonlinear Programming Problem, Management Science, 16, 604-606.
4. Bhatia, D. and Budhraja, Ramesh K. (1990), On a Class of Fractional Functional Programming Problems, Opsearch. 27 (4), 225-238.
5. Bhatia, D. and Datta, N. (1985), Necessary Conditions and SubgradientDuality for Nondifferentiable and Nonconvex Multiobjective Programming Problem, Cahiers du CERO. 27, 1311-140.
6. Bhatia, D. and Gupta, B. (1980), Efficiency in Certain Nonlinear Fractional Vector Maximization Problems, Indian J. Pure Appl. Math., 11, No. 5. 669-672.
7. Bhatia, D. and Jain, P. (1996), Generalized F-convexity and Duality: A Nondifferentiable Case, Asia Pacific Journal of Operational Research, 13, 65-75
8. Bhatia, D. and Pandey, S, (1991), Subgradient Duality and Duality for Multiobjective Fractional Programming Involving Invex Functions, Cahiers du CER0, 33, No. 2-3, 1-15.
9. Budhraja, R. K. (1992), A Fractional Multiobjective Programming Problem, International Journal of Management and Systems. 8, No. 3. 221-231.
10. Craven, B. D., and Mond, B. (1976), Sufficient Fritz John Optimality Conditions for Nondifferentiable Convex Programming, J. Aust. Math. Soc. (series B), 19, 462-468.
11. Kanniappan, P. (1983), Necessary Conditions for Optimality of Nondifferentiable Convex Multiobjective Programming, JOTA, 40, No. 2, 167-174.
Ramesh K. Budhraja
Sri Venkateswara College,
University of Delhi,
New Delhi - 110021, INDIA

Narender Kumar

Department of Mathematics,
Ram Lal Anand College (Evening)
University of Delhi, New Delhi-1 10021

