CHARACTERIZATION OF LINEAR 2-NORMED SPACES

S. Elumalai* & B. Baskaran**

ABSTRACT

In this paper we provide some characterization theorems in the context of linear 2-normed space.

Linear 2-normed space was first introduced by S.Gähler and was extended by C. Diminnie, S.Gähler and A. White.

Key words: best approximation, linear 2-normed space, proximinal in linear 2-normed space.

AMS(2000) Mathematics Subject Classification: 41A50, 41A65, 41A99, 46B99.

Definition 1 [5]: Let X be a real linear space of dimension greater than 1 and let $\|.,.\|$ be a real valued function on $X \times X$ satisfying the following conditions

- (1) $\|x, y\| = 0$ iff x and y are linearly dependent,
- (2) $||x, y|| = ||y, x||, \forall x, y \in X$.
- (3) $\|\alpha x, y\| = |\alpha| \|x, y\|, \forall x, y \in X \text{ and } \alpha \text{ a real number,}$
- (4) $||x, y + z|| \le ||x, y|| + ||x, z||, \forall x, y, z \in X$.

 $\|...\|$ is called a 2 norm on X and $(X, \|...\|)$ is called a linear 2-normed space.

Example 1: Let $X = R^3$ with the vector addition and scalar multiplication defined component wise and with 2-norm defined as follows:

for
$$x = (a_1, b_1, c_1)$$
, $y = (a_2, b_2, c_2)$

$$||x, y|| = \max \{|a_1b_2 - a_2b_1|, |b_1c_2 - b_2c_1|, |a_1c_2 - a_2c_1|\}$$

Then $\|x, y\|$ is a 2-norm and $(X, \|...\|)$ is a linear 2-normed space.

Let X be a linear 2-normed space over real number R and the mappings

$$\langle \cdot, \cdot | \cdot \rangle_{i} \langle \cdot, \cdot | \cdot \rangle_{s}$$
 be the 2-normed derivatives defined by

^{*} Ramanujan Institute of Advanced Study in Mathematics, University of Madras, Chennai-600 005, South India, *E-mail: elumalai_40@hotmail.com*

^{**} Department of Mathematics, St. Peter's Engineering College, Chennai-600 005, South India, E-mail: baskaran_40@hotmail.com

$$< x, y | z>_{i} = \lim_{t\to 0^{-}} \frac{\|y + tx, z\|^{2} - \|y, z\|^{2}}{2t}$$

and

$$< x, y | z>_{s} = \lim_{t\to 0+} \frac{\|y + tx, z\|^{2} - \|y, z\|^{2}}{2t}$$

for $x, y \in X$ and $z \in X \setminus V(x, y)$, where V(x, y) is the subspace of X generated x and y in X.

 $x \perp_{B} y$ —(x is orthogonal to y in the sense of Birkhoff) iff

$$||x + ky, z|| \ge ||x, z||$$
 for all $k \in R$, $x, y, z \in X$.

Example 2: Let $X = R^2$ with $||(x_1, x_2)|| = |x_1| + |x_2|$ and let $e_1 = (1, 0)$, $e_2 = (0, 1)$. Then the set of linear functionals satisfying

 $\{\max(|f(e_1)|,|f(e_2)|) \le 1\}$ which implies that $||e_1,e_2|| = 2$,

since $||(a_1, a_2), (b_1, b_2)|| = 2|a_1b_2 - a_2b_1|$, for all real α

$$\|\mathbf{e}_1 + \alpha \ \mathbf{e}_2\| = 1 + \|\alpha\| \ge \|\mathbf{e}_1\|$$
 and hence $\mathbf{e}_1 \perp_{\mathbf{B}} \mathbf{e}_2$.

Lemma 1: $||x + ky, z|| \ge ||x, z||$ iff

$$< y, x |z>_{i} \le 0 \le < y, x |z>_{s}$$

Proof: Given that $||x + ky, z|| \ge ||x, z||$

$$< y, x | z>_{s} = \lim_{t\to 0+} \frac{\|x+ty,z\|^{2} - \|x,z\|^{2}}{2t} \ge 0$$

and

$$< y, x | z>_{i} = \lim_{t\to 0-} \frac{\|x + ty, z\|^{2} - \|x, z\|^{2}}{2t} \le 0$$

Thus $< y, x | z >_{i} \le 0 \le < y, x | z >_{s}$

Lemma 2: $x \perp_{R} -\alpha x + y$ iff

$$\langle y, x|z\rangle_{i} \leq \alpha ||x, z||^{2} \leq \langle y, x|z\rangle_{s}$$

Proof: By Lemma 1.

$$\langle y - \alpha x, x | z \rangle \le 0 \le \langle y - \alpha x, x | z \rangle$$

i.e.
$$< y, x|z>_{i} - \alpha ||x, z||^{2} \le y, x|z>_{s} - \alpha ||x, z||^{2}$$

$$\Rightarrow$$
 $\langle y, x | z \rangle_{i} \leq \alpha ||x, z||^{2} \leq \langle y, x | z \rangle_{s}$

Let G be a subspace of a linear 2-normed space X.

write
$$P_{G,z}(x)$$
 = $\{g_o \in G : \|g_o - x, z\|\}$
= $\inf_{g \in G} \{\|g - x, z\|\}$, the set of best

approximation elements to $x \in X \setminus \overline{G}$ in G.

Lemma 3: Let G be a linear subspace of a linear 2-normed space $X, x_{_{o}} \in X \setminus \overline{G}$ and $g_{_{o}} \in G$. Then $g_{_{o}} \in P_{_{G}}(x_{_{o}}, z)$ iff $x_{_{o}} - g_{_{o}} \perp G$.

Proof: For the sake of completeness we provide the proof.

$$\begin{split} \text{Let } x_{_{o}} \in X \setminus \overline{G} \,,\, g_{_{o}} \in G \,\, \text{let } g_{_{o}} \in P_{_{G}}(x_{_{o}},\, z). \\ \text{Then } \|x_{_{o}} - g_{_{o}} + \alpha \,\, (g_{_{o}} - g),\,\, z\| \geq \|x_{_{o}} - g_{_{o}},\,\, z\| \\ \Rightarrow x_{_{o}} - g_{_{o}} \perp G. \\ \text{Assume that } x_{_{o}} - g_{_{o}} \perp G. \,\, \text{Then} \\ \|x_{_{o}} - g_{_{o}} + \alpha (g_{_{o}} - g),\,\, z\| \geq \|x_{_{o}} - g_{_{o}},\,\, z\| \\ \text{When } \alpha = 1,\,\, \|x_{_{o}} - g,\,\, z\| \geq \|x_{_{o}} - g_{_{o}},\,\, z\| \\ \Rightarrow g_{_{o}} \in P_{_{G}}(x_{_{o}},\,z). \end{split}$$

Lemma 4: Let X be a linear 2-normed space and $b \in X$. Then f be a non-zero continuous functional on $X \times [b]$, $x_o \in X \setminus \ker(f)$.

Then $g_o \in ker(f)$ [ker(f) = { $g_o \in X$: f (g_o, z) = 0, $z \in X$ }] iff the following estimate holds.

for all $x \in X$ and z is independent of x and x_0 ; $\lambda_0 = \operatorname{sgn} f(x_0, z)$

Proof : Let
$$g_o \in P(x_o, z)$$
. Then $ker(f)$

 $w_{_{o}}=x_{_{o}}-g_{_{o}}\perp ker(f)$ and $[f(x,\,z)\;w_{_{o}}-f(w_{_{o}},\,z)x]\in ker(f)\;$ for all $x\in X$, $z\in X\setminus ker(f).$

since
$$w_0 \perp [f(x, z) w_0 - f(w_0, z)x]$$
, We have

$$< f(x,z) w_o - f(w_o, z)x, w_o | z >_i \le 0$$

$$\leq < f(x,z) w_0 - f(w_0, z)x, w_0 \mid z>_s$$
for all $x \in X$, $z \in X \setminus ker(f)$.

Using the properties of norm derivatives < \cdot , $\cdot|\cdot>_{_{S}}$ and < \cdot , $\cdot|\cdot>_{_{i}}$

we have < f(x,z)
$$w_o - f(w_o, z)x$$
, $w_o \mid z>_p =$
$$f(x, z) \mid \mid w_o, z \mid \mid^2 - < x, \ f(w_0, z) \ w_0 \mid z>_q$$
 where $p=s$, i and $q=i$, s .

Then (2) becomes

$$< x, \frac{f(w_o, z)w_o}{\|w_o, z\|^2} |z>_i \le f(x, z)$$

$$\leq < x, \frac{f(w_o, z)w_o}{\|w_o, z\|^2} |z>_s$$
 (3)

where $x \in X$ and $z \in X \setminus ker(f)$

Let

$$u = \frac{f(w_o, z) w_o}{\|w_o, z\|^2}$$
 (4)

Then $f(x,z) \le \langle x , u|z >_s \le ||x,z|| ||u,z||$, for all $x \in X$, $z \in X \setminus V(x,u) \text{ and } f(x,z) \quad \ge \langle x , u|z >_i = -\langle x , u|z >_s \\ \ge -||x,z|| ||u,z||$

$$\therefore \ ||u, z|| \ge \frac{f(x, z)}{\|x, z\|} \ge -||u, z||$$

for all $x \in X$ and $z \in X \setminus V(x, u)$

 $\Rightarrow ||f|| \leq ||u,\ z||$

On the other hand
$$\parallel f \parallel \geq \frac{f(u,z)}{\parallel u,z \parallel} \geq \frac{\langle u,u \mid z >_i}{\parallel u,z \parallel} = \parallel u,z \parallel$$

$$Then \ \|f\| = \|u, \ z\| = \frac{| \ f \left(w_{_{o}}, z\right)|}{\left\|w_{_{o}}, z\right\|}$$

But
$$f(w_{_{0}},z) = f(x_{_{0}},z) \neq 0$$

$$Hence \parallel f \parallel = \frac{\mid f\left(x_{_{o}},z\right)\mid}{\left\|x_{_{o}}-g_{_{o}},z\right\|} = \frac{f\left(x_{_{o}},z\right)}{\lambda_{_{o}}\left\|x_{_{o}}-g_{_{o}},z\right\|}$$

$$\Rightarrow$$
 f (x_o, z) = λ _o || f || ||x_o - g_o, z||. Then, by (3)

$$\|f\| < x, \frac{f(w_o, z)w_o}{|f(w_o, z)| \|w_o, z\|} |z>_i \le f(x, z)$$

$$\leq \|f\| < x, \frac{f(w_0, z)w_0}{|f(w_0, z)| \|w_0, z\|} |z>_s$$

which is equivalent to (1).

Conversely if (1) holds, then

$$<$$
 x, $x_{_{o}}$ $-g_{_{o}}$ $|z>_{_{i}}\leq$ 0 \leq < x , $x_{_{o}}$ $-g_{_{o}}$ $|z>_{_{s}}$ for all x \in ker(f).

$$\Rightarrow$$
 $x_{o} - g_{o} \perp ker(f)$.

$$\Rightarrow g_{_{\scriptscriptstyle{0}}} \in P\left(x_{_{\scriptscriptstyle{0}}}^{},\,z\right)\!,\,z \in X \setminus V\left(x_{_{\scriptscriptstyle{0}}}^{},\,\ker(f)\right)$$

$$\ker(f)$$

Hence the result.

Theorem 1: Let f be a non-zero continuous linear functional on $X \times [b]$ where X is a linear 2-normed space and $b \in X$. Then the following statements are equivalent.

- (i) ker(f) is proximinal
- (ii) There exists at least one u_f in X with $||u_f| \ge ||z||$ such that

$$|| f || < x, u_f |z>_s \le f(x, z) \le < x, u |z>_s$$
 (5)

holds, for all $x, z \in X$ such that and z is independent of x and $u_{_{\mathrm{f}}}$

Proof: (i)
$$\Rightarrow$$
 (ii)

Assume that $\ker(f)$ is proximinal, then $\exists w_o \in X \setminus \ker(f)$ such that $w_o \perp \ker(f)$ (as in lemma 3) for all $x \in X$. we obtain (as in lemma 4)

$$< x, \frac{f(w_{o}, z)w_{o}}{\|w_{o}, z\|^{2}} |z>_{i} \le f(x, z)$$

$$\le < x, \frac{f(w_{o}, z)w_{o}}{\|w_{o}, z\|^{2}} |z>_{s}$$
(6)

where $z \in X$ such that z is independent of x and w_0 .

$$\left\| f \right\| = \frac{\left| f \left(w_{o}, z \right) \right|}{\left\| w_{o}, z \right\|}$$

Let
$$\lambda_o = \frac{f(w_o, z)}{|f(w_o, z)|}$$

and put
$$u_f = \frac{\lambda_o w_o}{\|w_o, z\|} = \frac{f(w_o, z)w_o}{|f(w_o, z)| \|w_o, z\|}$$

Then by (6) we obtain,

$$|| f || < x , u_f | z >_i \le f(x, z) \le < x , u_f | z >_s$$

$$(ii) \Rightarrow (i)$$

Assume that there exists at least one $u_f \in X$ with $||u_f|, z|| = 1$ such that (i) holds.

Then for all $x \in \ker(f)$, $\langle x, u_f | z \rangle \le 0 \le \langle x, u_f | z \rangle$

 \Rightarrow u_f \perp ker(f). Then by lemma 3, ker(f) is proximinal.

REFERENCES

- [1] Y.J. Cho, linear mappings on linear 2-normed spaces, Doctoral Diss., Pusan National Univ., (1984).
- [2] C. Diminnie, S. Gahler and A. White, 2-inner product spaces, Demonstratio Math. 6(1973), 525-536.
- [3] C. Diminnie and A. White, 1979, A Characterization of strictly linear 2-normed spaces, J. Korean Math. soc.11 (1979), 53-54.
- [4] S.S. Dragomir, On best approximation on real normed linear spaces and Characterization of reflexivity and strict convexity, *Indian J. Math.*, vol. 41, no. 2. 1999, 147-158.
- [5] S.S. Dragomir, Some characterization of best approximation from linear spaces and application (FJMS), vol.1(5) (1999), page 805.
- [6] S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28. (1965), 1-43.
- [7] R.C. James, Orthogonality in normed linear spaces, Duke Math. J. 12(1945), 291-302.
- [8] A. White and Y.J. Cho, linear mappings on linear 2-normed spaces, Bull. Korean Math. Soc. 21(1) (1984).

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/