CHARACTERIZATION OF LINEAR 2NORMED SPACES

S. Elumalai* \& B. Baskaran**

Abstract

In this paper we provide some characterization theorems in the context of linear 2-normed space. Linear 2-normed space was first introduced by S.Gähler and was extended by C. Diminnie, S.Gähler and A. White.

Key words: best approximation, linear 2-normed space, proximinal in linear 2-normed space.

AMS(2000) Mathematics Subject Classification: 41A50, 41A65, 41A99, $46 B 99$.

Definition 1 [5]: Let X be a real linear space of dimension greater than 1 and let $\|.,$.$\| be a real valued function on X \times X$ satisfying the following conditions
(1) $\|x, y\|=0$ iff x and y are linearly dependent,
(2) $\|x, y\|=\|y, x\|, \forall x, y \in X$.
(3) $\|\alpha x, y\|=|\alpha|\|x, y\|, \forall x, y \in X$ and α a real number,
(4) $\|x, y+z\| \leq\|x, y\|+\|x, z\|, \forall x, y, z \in X$.
$\|.$,$\| is called a 2$ norm on X and $(\mathrm{X},\|.,\|$.$) is called a linear 2-normed space.$
Example 1: Let $\mathrm{X}=\mathrm{R}^{3}$ with the vector addition and scalar multiplication defined component wise and with 2 -norm defined as follows:
for $x=\left(a_{1}, b_{1}, c_{1}\right), y=\left(a_{2}, b_{2}, c_{2}\right)$
$\|\mathrm{x}, \mathrm{y}\|=\max \left\{\left|\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}\right|,\left|\mathrm{b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}\right|,\left|\mathrm{a}_{1} \mathrm{c}_{2}-\mathrm{a}_{2} \mathrm{c}_{1}\right|\right\}$
Then $\|x, y\|$ is a 2 -norm and $(X,\|.\|$,$) is a linear 2-normed space.$
Let X be a linear 2-normed space over real number R and the mappings
$\langle\cdot, \cdot \mid \cdot\rangle_{\mathrm{i}},\langle\cdot, \cdot \mid \cdot\rangle_{\mathrm{s}}$ be the 2-normed derivatives defined by

[^0]$$
\langle\mathrm{x}, \mathrm{y} \mid \mathrm{z}\rangle_{\mathrm{i}}=\lim _{\mathrm{t} \rightarrow 0-} \frac{\|\mathrm{y}+\mathrm{tx}, \mathrm{z}\|^{2}-\|\mathrm{y}, \mathrm{z}\|^{2}}{2 \mathrm{t}}
$$
and
$$
\langle\mathrm{x}, \mathrm{y} \mid \mathrm{z}\rangle_{\mathrm{s}}=\lim _{\mathrm{t} \rightarrow 0+} \frac{\|\mathrm{y}+\mathrm{tx}, \mathrm{z}\|^{2}-\|\mathrm{y}, \mathrm{z}\|^{2}}{2 \mathrm{t}}
$$
for $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{z} \in \mathrm{XIV}(\mathrm{x}, \mathrm{y})$, where $\mathrm{V}(\mathrm{x}, \mathrm{y})$ is the subspace of X generated x and y in X .
$\mathrm{x} \perp_{\mathrm{B}} \mathrm{y}$ - (x is orthogonal to y in the sense of Birkhoff) iff
$$
\|x+k y, z\| \geq\|x, z\| \text { for all } k \in R, x, y, z \in X .
$$

Example 2: Let $\mathrm{X}=\mathrm{R}^{2}$ with $\left\|\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right\|=\left|\mathrm{x}_{1}\right|+\left|\mathrm{x}_{2}\right|$ and let $\mathrm{e}_{1}=(1,0), \mathrm{e}_{2}=(0,1)$. Then the set of linear functionals satisfying
$\left\{\max \left(\left|f\left(\mathrm{e}_{1}\right)\right|,\left|f\left(\mathrm{e}_{2}\right)\right|\right) \leq 1\right\}$ which implies that $\left\|\mathrm{e}_{1}, \mathrm{e}_{2}\right\|=2$,
since $\left\|\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\|=2\left|a_{1} b_{2}-a_{2} b_{1}\right|$, for all real α
$\left\|e_{1}+\alpha e_{2}\right\|=1+|\alpha| \geq\left\|e_{1}\right\|$ and hence $e_{1} \perp_{B} e_{2}$.
Lemma 1: $\quad\|x+k y, z\| \geq\|x, z\|$ iff

$$
\langle y, x \mid z\rangle_{i} \leq 0 \leq\langle y, x \mid z\rangle_{s}
$$

Proof: Given that $\|x+k y, z\| \geq\|x, z\|$

$$
\langle\mathrm{y}, \mathrm{x} \mid \mathrm{z}\rangle_{\mathrm{s}}=\lim _{\mathrm{t} \rightarrow 0+} \frac{\|\mathrm{x}+\mathrm{ty}, \mathrm{z}\|^{2}-\|\mathrm{x}, \mathrm{z}\|^{2}}{2 \mathrm{t}} \geq 0
$$

and

$$
\langle\mathrm{y}, \mathrm{x} \mid \mathrm{z}\rangle_{\mathrm{i}}=\lim _{\mathrm{t} \rightarrow 0-} \frac{\|\mathrm{x}+\mathrm{ty}, \mathrm{z}\|^{2}-\|\mathrm{x}, \mathrm{z}\|^{2}}{2 \mathrm{t}} \leq 0
$$

Thus $\langle\mathrm{y}, \mathrm{x} \mid \mathrm{z}\rangle_{\mathrm{i}} \leq 0 \leq\langle\mathrm{y}, \mathrm{x} \mid \mathrm{z}\rangle_{\text {s }}$
Lemma 2: $\mathrm{x} \perp_{\mathrm{B}}-\alpha \mathrm{x}+\mathrm{y}$ iff
$\langle\mathrm{y}, \mathrm{x} \mid \mathrm{z}\rangle_{\mathrm{i}} \leq \alpha\|\mathrm{x}, \mathrm{z}\|^{2} \leq\langle\mathrm{y}, \mathrm{x} \mid \mathrm{z}\rangle_{\mathrm{s}}$
Proof: By Lemma 1,

$$
\langle y-\alpha x, x \mid z\rangle_{i} \leq 0 \leq\langle y-\alpha x, x \mid z\rangle_{s}
$$

i.e. $\langle y, x \mid z\rangle_{i}-\alpha\|x, z\|^{2} \leq y, x|z\rangle_{s}-\alpha\|x, z\|^{2}$
$\Rightarrow\langle y, x \mid z\rangle_{i} \leq \alpha\|x, z\|^{2} \leq\langle y, x \mid z\rangle_{\text {s }}$
Let G be a subspace of a linear 2-normed space X .
write $\mathrm{P}_{\mathrm{G}_{\mathrm{z}}}(\mathrm{x}) \quad=\left\{\mathrm{g}_{\mathrm{o}} \in \mathrm{G}:\left\|\mathrm{g}_{\mathrm{o}}-\mathrm{x}, \mathrm{z}\right\|\right\}$

$$
\begin{aligned}
& =\inf _{g \in \mathrm{G}}\{\|\mathrm{~g}-\mathrm{x}, \mathrm{z}\|\} \text {, the set of best } \\
& \quad \\
& \quad \text { approximation elements to } \mathrm{x} \in \mathrm{X} \backslash \overline{\mathrm{G}} \text { in } \mathrm{G} .
\end{aligned}
$$

Lemma 3: Let G be a linear subspace of a linear 2-normed space $X, x_{0} \in X \backslash \bar{G}$ and $\mathrm{g}_{\mathrm{o}} \in$ G. Then $\mathrm{g}_{0} \in \mathrm{P}_{\mathrm{G}}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{z}\right)$ iff $\mathrm{x}_{\mathrm{o}}-\mathrm{g}_{\mathrm{o}} \perp \mathrm{G}$.

Proof: For the sake of completeness we provide the proof.
Let $\mathrm{x}_{\mathrm{o}} \in \mathrm{X} \backslash \overline{\mathrm{G}}, \mathrm{g}_{\mathrm{o}} \in \mathrm{G}$. let $\mathrm{g}_{\mathrm{o}} \in \mathrm{P}_{\mathrm{G}}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{z}\right)$.
Then $\left\|\mathrm{x}_{\mathrm{o}}-\mathrm{g}_{\mathrm{o}}+\alpha\left(\mathrm{g}_{\mathrm{o}}-\mathrm{g}\right), \mathrm{z}\right\| \geq\left\|\mathrm{x}_{\mathrm{o}}-\mathrm{g}_{\mathrm{o}}, \mathrm{z}\right\|$
$\Rightarrow \mathrm{X}_{\mathrm{o}}-\mathrm{g}_{\mathrm{o}} \perp \mathrm{G}$.
Assume that $\mathrm{x}_{\mathrm{o}}-\mathrm{g}_{0} \perp \mathrm{G}$. Then
$\left\|\mathrm{x}_{\mathrm{o}}-\mathrm{g}_{\mathrm{o}}+\alpha\left(\mathrm{g}_{0}-\mathrm{g}\right), \mathrm{z}\right\| \geq\left\|\mathrm{x}_{\mathrm{o}}-\mathrm{g}_{\mathrm{o}}, \mathrm{z}\right\|$
When $\alpha=1,\left\|\mathrm{x}_{\mathrm{o}}-\mathrm{g}, \mathrm{z}\right\| \geq\left\|\mathrm{x}_{\mathrm{o}}-\mathrm{g}_{\mathrm{o}}, \mathrm{z}\right\|$
$\Rightarrow \mathrm{g}_{\mathrm{o}} \in \mathrm{P}_{\mathrm{G}}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{z}\right)$.
Lemma 4: Let X be a linear 2-normed space and $\mathrm{b} \in \mathrm{X}$. Then f be a non-zero continuous functional on $X \times[b], x_{o} \in X \backslash \operatorname{ker}(f)$.

Then $g_{0} \in \operatorname{ker}(f)\left[\operatorname{ker}(f)=\left\{g_{0} \in X: f\left(g_{0}, z\right)=0, z \in X\right\}\right]$ iff the following estimate holds.

$$
\begin{equation*}
\|f\|<x, \frac{\lambda_{0}\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|}|z\rangle_{i} \leq f(x, z) \leq\|f\|<x, \frac{\lambda_{0}\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|}|z\rangle_{\mathrm{s}} \tag{1}
\end{equation*}
$$

for all $\mathrm{x} \in \mathrm{X}$ and z is independent of x and $\mathrm{x}_{\mathrm{o}} ; \lambda_{\mathrm{o}}=\operatorname{sgn} \mathrm{f}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{z}\right)$
Proof : Let $g_{0} \in P\left(x_{0}, z\right)$. Then

$$
\operatorname{ker}(\mathrm{f})
$$

$\mathrm{w}_{\mathrm{o}}=\mathrm{x}_{\mathrm{o}}-\mathrm{g}_{\mathrm{o}} \perp \operatorname{ker}(\mathrm{f})$ and $\left[\mathrm{f}(\mathrm{x}, \mathrm{z}) \mathrm{w}_{\mathrm{o}}-\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right) \mathrm{x}\right] \in \operatorname{ker}(\mathrm{f})$ for all $\mathrm{x} \in \mathrm{X}, \mathrm{z} \in \mathrm{X} \backslash$ $\operatorname{ker}(f)$.
since $w_{o} \perp\left[f(x, z) w_{o}-f\left(w_{o}, z\right) x\right]$, We have
$\left\langle\mathrm{f}(\mathrm{x}, \mathrm{z}) \mathrm{w}_{\mathrm{o}}-\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right) \mathrm{x}, \mathrm{w}_{\mathrm{o}} \mid \mathrm{z}\right\rangle_{\mathrm{i}} \leq 0$

$$
\begin{equation*}
\leq\left\langle f(x, z) w_{0}-f\left(w_{0}, z\right) x, w_{0} \mid z\right\rangle_{s} \tag{2}
\end{equation*}
$$

$$
\text { for all } \mathrm{x} \in \mathrm{X}, \mathrm{z} \in \mathrm{X} \backslash \operatorname{ker}(\mathrm{f}) \text {. }
$$

Using the properties of norm derivatives $\langle\cdot, \cdot \mid \cdot\rangle_{\mathrm{s}}$ and $\langle\cdot, \mid \cdot\rangle_{\mathrm{i}}$
we have $\left\langle\mathrm{f}(\mathrm{x}, \mathrm{z}) \mathrm{w}_{\mathrm{o}}-\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right) \mathrm{x}, \mathrm{w}_{\mathrm{o}} \mid \mathrm{z}\right\rangle_{\mathrm{p}}=$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x}, \mathrm{z})\left\|\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right\|^{2}-\left\langle\mathrm{x}, \mathrm{f}\left(\mathrm{w}_{0}, \mathrm{z}\right) \mathrm{w}_{0} \mid \mathrm{z}\right\rangle_{\mathrm{q}} \\
& \text { where } \mathrm{p}=\mathrm{s}, \mathrm{i} \text { and } \mathrm{q}=\mathrm{i}, \mathrm{~s} .
\end{aligned}
$$

Then (2) becomes

$$
\begin{align*}
\left\langle x, \left.\frac{\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right) \mathrm{w}_{\mathrm{o}}}{\left\|\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right\|^{2}} \right\rvert\, \mathrm{z}\right\rangle_{\mathrm{i}} & \leq \mathrm{f}(\mathrm{x}, \mathrm{z}) \\
& \leq<\mathrm{x}, \frac{\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right) \mathrm{w}_{\mathrm{o}}}{\left\|\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right\|^{2}}|\mathrm{z}\rangle_{\mathrm{s}} \tag{3}
\end{align*}
$$

where $\mathrm{x} \in \mathrm{X}$ and $\mathrm{z} \in \mathrm{X} \backslash \operatorname{ker}(\mathrm{f})$
Let

$$
\begin{equation*}
\mathrm{u}=\frac{\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right) \mathrm{w}_{\mathrm{o}}}{\left\|\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right\|^{2}} \tag{4}
\end{equation*}
$$

Then $\mathrm{f}(\mathrm{x}, \mathrm{z}) \leq\langle\mathrm{x}, \mathrm{u} \mid \mathrm{z}\rangle_{\mathrm{s}} \leq\|\mathrm{x}, \mathrm{z}\|\|\mathrm{u}, \mathrm{z}\|$, for all $\mathrm{x} \in \mathrm{X}$,
$\mathrm{z} \in \mathrm{X} \backslash \mathrm{V}(\mathrm{x}, \mathrm{u})$ and $\mathrm{f}(\mathrm{x}, \mathrm{z}) \geq\langle\mathrm{x}, \mathrm{u} \mid \mathrm{z}\rangle_{\mathrm{i}}=-\langle\mathrm{x}, \mathrm{u} \mid \mathrm{z}\rangle_{\mathrm{s}}$
$\geq-\|x, z\|\|u, z\|$
$\therefore\|\mathrm{u}, \mathrm{z}\| \geq \frac{\mathrm{f}(\mathrm{x}, \mathrm{z})}{\|\mathrm{x}, \mathrm{z}\|} \geq-\|\mathrm{u}, \mathrm{z}\|$
for all $\mathrm{x} \in \mathrm{X}$ and $\mathrm{z} \in \mathrm{X} \backslash \mathrm{V}(\mathrm{x}, \mathrm{u})$
$\Rightarrow\|f\| \leq\|\mathrm{u}, \mathrm{z}\|$
On the other hand $\|\mathrm{f}\| \geq \frac{\mathrm{f}(\mathrm{u}, \mathrm{z})}{\|\mathrm{u}, \mathrm{z}\|} \geq \frac{\langle\mathrm{u}, \mathrm{u} \mid \mathrm{z}\rangle_{\mathrm{i}}}{\|\mathrm{u}, \mathrm{z}\|}=\|\mathrm{u}, \mathrm{z}\|$
Then $\|f\|=\|u, z\|=\frac{\left|f\left(\mathrm{w}_{0}, \mathrm{z}\right)\right|}{\left\|\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right\|}$
But $\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{z}\right) \neq 0$
Hence $\|\mathrm{f}\|=\frac{\left|\mathrm{f}\left(\mathrm{x}_{0}, \mathrm{z}\right)\right|}{\left\|\mathrm{x}_{\mathrm{o}}-\mathrm{g}_{0}, \mathrm{z}\right\|}=\frac{\mathrm{f}\left(\mathrm{x}_{0}, \mathrm{z}\right)}{\lambda_{\mathrm{o}}\left\|\mathrm{x}_{\mathrm{o}}-\mathrm{g}_{0}, \mathrm{z}\right\|}$

$$
\begin{aligned}
& \Rightarrow \mathrm{f}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{z}\right)=\lambda_{\mathrm{o}}\|\mathrm{f}\|\left\|\mathrm{x}_{\mathrm{o}}-\mathrm{g}_{\mathrm{o}}, \mathrm{z}\right\| \text {. Then, by (3) } \\
& \qquad \begin{aligned}
\|\mathrm{f}\|<\mathrm{x}, \frac{\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right) \mathrm{w}_{\mathrm{o}}}{\left|\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right)\right|\left\|\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right\|} & \mid \mathrm{z}>_{\mathrm{i}} \leq \mathrm{f}(\mathrm{x}, \mathrm{z}) \\
& \leq\|\mathrm{f}\|<\mathrm{x}, \left.\frac{\mathrm{f}\left(\mathrm{w}_{0}, \mathrm{z}\right) \mathrm{w}_{0}}{\left|\mathrm{f}\left(\mathrm{w}_{0}, \mathrm{z}\right)\right|\left\|\mathrm{w}_{0}, \mathrm{z}\right\|} \right\rvert\, \mathrm{z}>_{\mathrm{s}}
\end{aligned}
\end{aligned}
$$

which is equivalent to (1).
Conversely if (1) holds, then
$\left\langle\mathrm{x}, \mathrm{x}_{\mathrm{o}}-\mathrm{g}_{\mathrm{o}} \mid \mathrm{z}\right\rangle_{\mathrm{i}} \leq 0 \leq\left\langle\mathrm{x}, \mathrm{x}_{\mathrm{o}}-\mathrm{g}_{\mathrm{o}} \mid \mathrm{z}\right\rangle_{\mathrm{s}}$ for all $\mathrm{x} \in \operatorname{ker}(\mathrm{f})$.
$\Rightarrow \mathrm{x}_{\mathrm{o}}-\mathrm{g}_{\mathrm{o}} \perp \operatorname{ker}(\mathrm{f})$.
$\Rightarrow \mathrm{g}_{\mathrm{o}} \in \mathrm{P}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{z}\right), \mathrm{z} \in \mathrm{X} \backslash \mathrm{V}\left(\mathrm{x}_{\mathrm{o}}, \operatorname{ker}(\mathrm{f})\right)$ $\operatorname{ker}(\mathrm{f})$

Hence the result.
Theorem 1: Let f be a non-zero continuous linear functional on $\mathrm{X} \times[\mathrm{b}]$ where X is a linear 2-normed space and $\mathrm{b} \in \mathrm{X}$. Then the following statements are equivalent.
(i) $\operatorname{ker}(\mathrm{f})$ is proximinal
(ii) There exists at least one u_{f} in X with $\left\|\mathrm{u}_{\mathrm{f}} \mathrm{z}\right\| \mathrm{z} \|$ such that
$\|\mathrm{f}\|\left\langle\mathrm{x}, \mathrm{u}_{\mathrm{f}} \mid \mathrm{z}\right\rangle_{\mathrm{i}} \leq \mathrm{f}(\mathrm{x}, \mathrm{z}) \leq\langle\mathrm{x}, \mathrm{u} \mid \mathrm{z}\rangle_{\mathrm{s}}$
holds, for all $x, z \in X$ such that and z is independent of x and u_{f}
Proof: (i) \Rightarrow (ii)
Assume that $\operatorname{ker}(\mathrm{f})$ is proximinal, then $\exists \mathrm{w}_{\mathrm{o}} \in \mathrm{X} \backslash \operatorname{ker}(\mathrm{f})$ such that $\mathrm{w}_{\mathrm{o}} \perp \operatorname{ker}(\mathrm{f})$ (as in lemma 3) for all $\mathrm{x} \in \mathrm{X}$. we obtain (as in lemma 4)

$$
\begin{align*}
& <\mathrm{x}, \frac{\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right) \mathrm{w}_{\mathrm{o}}}{\left\|\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right\|^{2}}|\mathrm{z}\rangle_{\mathrm{i}} \leq \mathrm{f}(\mathrm{x}, \mathrm{z}) \\
& \quad \leq\left\langle\mathrm{x}, \left.\frac{\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right) \mathrm{w}_{\mathrm{o}}}{\left\|\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right\|^{2}} \right\rvert\, \mathrm{z}\right\rangle_{\mathrm{s}} \tag{6}
\end{align*}
$$

where $\mathrm{z} \in \mathrm{X}$ such that z is independent of x and w_{0}.

$$
\|f\|=\frac{\left|f\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right)\right|}{\left\|\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right\|}
$$

Let $\lambda_{\mathrm{o}}=\frac{\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right)}{\left|\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right)\right|}$
and put $\mathrm{u}_{\mathrm{f}}=\frac{\lambda_{\mathrm{o}} \mathrm{w}_{\mathrm{o}}}{\left\|\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right\|}=\frac{\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right) \mathrm{w}_{\mathrm{o}}}{\left|\mathrm{f}\left(\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right)\right|\left\|\mathrm{w}_{\mathrm{o}}, \mathrm{z}\right\|}$
Then by (6) we obtain,
$\|\mathrm{f}\|\left\langle\mathrm{x}, \mathrm{u}_{\mathrm{f}} \mid \mathrm{z}\right\rangle_{\mathrm{i}} \leq \mathrm{f}(\mathrm{x}, \mathrm{z}) \leq\left\langle\mathrm{x}, \mathrm{u}_{\mathrm{f}} \mid \mathrm{z}\right\rangle_{\mathrm{s}}$
(ii) \Rightarrow (i)

Assume that there exists atleast one $u_{f} \in X$ with $\left\|u_{f}, z\right\|=1$ such that (i) holds.
Then for all $\mathrm{x} \in \operatorname{ker}(\mathrm{f}),\left\langle\mathrm{x}, \mathrm{u}_{\mathrm{f}} \mid \mathrm{z}\right\rangle_{\mathrm{i}} \leq 0 \leq\left\langle\mathrm{x}, \mathrm{u}_{\mathrm{f}} \mid \mathrm{z}\right\rangle_{\mathrm{s}}$
$\Rightarrow \mathrm{u}_{\mathrm{f}} \perp \operatorname{ker}(\mathrm{f})$. Then by lemma 3 , $\operatorname{ker}(\mathrm{f})$ is proximinal.

REFERENCES

[1] Y.J. Cho, linear mappings on linear 2-normed spaces, Doctoral Diss., Pusan National Univ., (1984).
[2] C. Diminnie, S. Gahler and A. White, 2-inner product spaces, Demonstratio Math. 6(1973), 525-536.
[3] C. Diminnie and A. White, 1979, A Characterization of strictly linear 2-normed spaces, J. Korean Math. soc. 11 (1979), 53-54.
[4] S.S. Dragomir, On best approximation on real normed linear spaces and Characterization of reflexivity and strict convexity, Indian J. Math., vol. 41, no. 2. 1999, 147-158.
[5] S.S. Dragomir, Some characterization of best approximation from linear spaces and application (FJMS), vol.1(5) (1999), page 805.
[6] S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28. (1965), 1- 43.
[7] R.C. James, Orthogonality in normed linear spaces, Duke Math. J. 12(1945), 291-302.
[8] A. White and Y.J. Cho, linear mappings on linear 2-normed spaces, Bull. Korean Math. Soc. 21(1) (1984).

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.
http://www.win2pdf.com/purchase/

[^0]: * Ramanujan Institute of Advanced Study in Mathematics, University of Madras, Chennai600 005, South India, E-mail: elumalai_40@hotmail.com
 ** Department of Mathematics, St. Peter's Engineering College, Chennai-600 005, South India, E-mail: baskaran_40@hotmail.com

