
Secure Data Communication in Cloud
Using Fully Homomorphic Encryption
Mebin K. Babu *, Deedish Udayan** and Sumesh S.***

ABSTRACT

Cloud computing ensures a convenient way of trading and sharing of content, where user can access the content
easily and the distributor (content provider) outsources the content within the secure channel. Always the
confidentiality of content is the main problem faced by the distributor and due to this reason they are afraid to
outsource the content through cloud computing. As a solution they use the Digital Right Management (DRM)
scheme which uses the concept of keyserver, License server and Content Encryption Key for data protection and
also it uses Additive Homomorphic Probabilistic Public Key Encryption and Proxy Re-encryption rules for
encrypting and decrypting the keys and contents. Homomorphic is simply adding of two keys, which is easy to
the intruder to hack it and use the content. Instead of this simple Homomorphic Encrytpion we try to use Fully
Homomorphic Encryption to give more security for data and also we try to reduce the number of transactions in
the base system.

Keywords: Full Homomorphic Encryption, Re-Encryption, Content Encryption Key, Multiplication Key.

1. INTRODUCTION

In the research scheme [1] Secure and Privacy-preserving DRM scheme using Homomorphic Encryption
(HE) in Cloud computing, the author proposes a DRM scheme which uses two types of methods like Proxy
Re-encryption and Additive Homomorphic Probabilistic Public Key Encryption (AHPPE). The Proxy re-
encryption (PRE) is widely used to protect the content in semi-trusted cloud environment and it generates
a Content Main Key for user which is only re-encrypted by the license server. Additive Homomorphic
Encryption (AHE) allows performers to compute correct operations over encrypted values without being
aware of their content. It generates a Content Encryption Key (CEK) for user using Content Main Key
(CMK) of the owner and Assistant Key (AK) of the key server.

But the problem is that, the Additive Homomorphic Encryption (AHE) in the proposed scheme just
adds the two keys like CMK and Assistant Main Key together and generate a CEK, which is used by the
user to encrypt the main content and that encrypted content sent to content server.

In this paper [2][7] state that, Homomorphic Encryption (HE) is classified into three types Partially
Homomorphic Encryption (PHE), Somewhat Homomorphic Encryption, and Fully Homomorphic Encryption
(FHE). The Additive HE includes the category of PHE. This encryption performs one operation on encrypted
data, such as multiplication or addition but not both. Here, the proposed scheme uses addition on keys i.e.
CMK and AK.

In the case of FHE, it is a cryptosystem which sustains both addition and multiplication and can compute
any function. When we use FHE on proposed DRM scheme of Huang Qin-Lang[1], it sustains both addition

Department of CS & IT, Amrita School of Arts and Sciences, Kochi, Amrita Vishwa Vidyapeetham, India

* MCA Student, Email: mebinova@gmail.com

** MCA Student, Email: deedish.ud@gmail.com

*** Assistant Professor, Email: ssumesh@hotmail.com

I J C T A, 9(15), 2016, pp. 7627-7632
© International Science Press

7628 Mebin K. Babu, Deedish Udayan and Sumesh S.

and multiplication on the keys and for this purpose we introduce two more keys like multiplication key and
two AK for generating a FH DRM system. Therefore it gives more security for the key rather than the AHE.

2. RELATED WORKS

DRM is an important technology of taking a series of measures to protect the digital contents from being
abused and make sure that digital contents are fair to use. In the base paper [1], methods like PRE and
AHPPE are used to protect the contents through keys. Here [1], they follow four steps for securing contents,
key generation, content encryption, license acquisition and content consumption using with the keys of
CMK, CEK and AK to full fill the above four steps. The CEK is the collection of CMK and AK. The basic
diagram of existing system is shown below.

Homomorphic encryption [2] uses specific types of computations to be carried out in cipher text which
produce an encrypted result which is also a cipher text. Earlier homomorphic encryption used a specific
algebraic operation performed on a plain text which is equivalent to another algebraic operation performed
on its cipher text. Mainly three types of Homomorphic encryption are used. First one is Partially
Homomorphic which performs one operation on encrypted data. Second one is Somewhat Homomorphic,
which uses more than one operation but can only support a limited number of addition and multiplication
processes. Fully Homomorphic is the last one which performs addition and multiplication simultaneously
in any function.

Some versions of DRM [3] try to solve the interoperability problem by suggesting that both content
providers and customers need to open parts of their security properties without the assurance of a beneficial
outcome. Without the participation of both DRM technology and content providers, DRM interoperability
schemes are hard to achieve and they [3] used DRM interoperability agent (DIA) and DRM interoperability
server (DIS) to solve the problem. .

A multiparty multilevel architecture [4] contains different eves of distributors who help content
provider and consumer for sharing information from one end to another. In this paper, Usage Logs are
used to find out unauthorized usage of data from the consumer side and analyses this usage in Log
Collection center. Also this scheme uses Global encryption key (GEK), which is unique for a particular
content or owner and Local encryption key (LEK), which is different for different owners and different
distributors and different contents.

Figure 1: DRM System

Secure Data Communication in Cloud Using Fully Homomorphic Encryption 7629

3. PROPOSED SYSTEM

In the scheme [1] DRM system gives more effort to the Content Provider, where it generates the re-encryption
key (combination of CP’s and User’s Public Keys) which is mainly used to identify the user. But in Multi
User, CP wants to check each user and generate key for each one. So we proposed the re-encryption key
generated on the key server side, and then the Content Provider has less effort on the basis of key and
reduces one transaction of keys in DRM. Thus the content provider just worried about its content and not
about its re-encryption key. Secondly, Key Server generates private- public keys for CP and User and sends
them into an open channel. Here a middle man attack is possible and if intruder gets the both keys the
system is totally unsecured. In our scheme, also the Key Server generate private-public keys for CP and
User but only private key is send to them where we reduced the chance of getting two keys also we change
the combination of re-encryption key, now it is a combination of public key of both CP and the User.
Thirdly we add a time stamp in content server side to avoid the replay attack from the unauthorized user[8].
And lastly we introduce Fully Homomorphic Encryption[5][6] instead of additive homomorphic encryption
for this purpose we use one more AK and Multiplication Key which is the combination of CMK and one of
the AK. The following are the different steps involved in the proposed system.

3.1. Key Generation

Figure 2: Sequence diagram of Key Generation

Step 1: KS CP: Key (PR
cp

) KS : Key Server

Step 2: KS U: Key (PR
u
) CP : Content Provider

Step 3: KS CP: Key (PU
u
) PR

cp
: Private key of Content Provider

 KS LS: R
cp u

 = Z (PU
cp

, PU
u
) PR

u
: Private key of User

Step 4: KS CP: E (K
a1

,PU
cp

) PU
u

: Public key of User

 KS CP: E (K
a2

,PU
cp

) PU
cp

: Public key of Content Provider

LS : License Server

U : User

The Key server creates a private/public key (PR
cp

 , PU
cp

) for content provider and sends the private to
the content provider. Then in second step key server creates a private key PR

u
 for unknown user and sends

it to that unknown user from this way key server cannot be able to get the user’s personal information. In
third step key server sends a copy of user public key to the content provider and Key server generates a re-

7630 Mebin K. Babu, Deedish Udayan and Sumesh S.

encryption key R
cp

->
u
 for the user using PU

cp
 and PU

u
, sends it to license server. And in last step the Key

server randomly generates two assistant key K
a1

, K
a2

 and encrypts it with content provider’s public key
PU

cp
, and then sends it to content provider. After this process content provider generates K

cm
 randomly.

3.2. Content Encryption

Figure 3: Sequence diagram of Content Encryption

Step 1: CP: Kmk = Kcm + Ka 1 K
a1

,K
a2

: Assistant Keys

 : K
ce

 = K
mk

 * K
a2

K
mk

: Multiplication Key

Step 2: CP CS : C = E (M, K
ce

) K
cm

: Content Main Key

Step 3: CP LS : E (K
cm

, PR
cp

) K
ce

: Content Encryption Key

M : Plain Content text

CS : Content Server

The content provider decrypts the K
a1

 and K
a2

 with the private key of content provider PR
cp

, and then
computes K

ce
 . In second step content provider encrypts the plain content with the K

ce
 and sends the encrypted

content to the content server. And in last again content provider encrypts the K
cm

 with the private key of
content provider and sends it to license server.

3.3. License Acquisition

Figure 4: Sequence diagram of License Acquisition

Secure Data Communication in Cloud Using Fully Homomorphic Encryption 7631

Step 1: SP LS: C
id
, WW

u
, T, Q

ls
SP : Service Provider

Step 2: LS : E (K
cm

, PU
u
) = F(R

cp u
, E(K

cm
, PR

cp
)) R : Re-Encryption Key

Step 3: LS KS C
id
, E((K

cm
, PU

u
), T, Q

ks
C

id
: Content identity

Step 4: KS : E(K
mk

, PU
u
) = E(K

cm
, PU

u
) + E(K

al
, PU

u
) W

u
: User Rights

 : E(K
ce

, PU
u
) = E(K

mk
, PU

u
) * E(K

a2
, PU

u
) T : Time Stamp

Step 5: KS LS : E(K
ce

, PU
u
) W

e
: Right expression

Step 6: LS SP : C
id
, E(K

ce
, PU

u
), WW

e
, Q

l

Service provider sends an acquisition request to license server. In step two the license server checks the
Q

ls
 with T, then re-encrypt the E (K

cm
, PR

cp
) with the re-encryption key and license server sends the key

acquisition request to the key server. Then in step four Key server generates the key K
ce

 using the equation
K

mk
, K

cm
 + K

a1
, and K

ce
= K

mk
 * K

a2
, and sends the encrypted Kce to the license server. And in last step

license server generates the right expression W
e
 from the W

u
, and license signature for user verification,

and send the E(K
ce

, PU
u
) to the service provider.

3.4. Content Consumption

Figure 5: Sequence diagram of Content consumption

Step 1: SP U: C
id
, E(K

ce
, PU

u
), WW

e
, Q

l
, T Q

l
: License Signature

Step 2: U: K
ce

= D (E(K
ce

, PU
u
), PR

u
) Q

ks
: Key Acquisition Request Signature

 U CS: C
id
, WW

e
, Q

l
, T

l
Q

ls
: License Acquisition Request Signature

Step 3: CS U: TT
2
, C

 U: M = D(C, K
ce

)

First Service provider sends the encrypted K
ce

 to the user with user right expression, license signature
and time stamp to prevent the replay attack. Then user decrypt the K

ce
 using its own private key PR

u
, and

send a request to the content server including C
id
, W

e
, Q

l
 and time stamp for Encrypted content data. After

checking the right expression and license signature, content server outsources the encrypted content to the
Authorized user. And at last user decrypt the encrypted content using K

ce
.

4. CONCLUSIONS

In this scheme [1] the DRM system gives an authority to the CP to generate a Re-encryption Key for a user
but the problem of this scheme is that, when more than one user uses the DRM system, CP want to create

7632 Mebin K. Babu, Deedish Udayan and Sumesh S.

Re-encryption Key for each user which is give more effort to the CP. In our scheme the Re-encryption Key
is generated by key server which have given little effort to the CP and never bothered about multi-user. The
proposed work is little complex in terms of timing but give high secure to the data comparing to the early
scheme like Simple Homomorhic. We are now planning to simulate the proposed system in Amazon EC2
cloud environment. Where we used Credit card to select a linux based environment to work out our proposed
scheme and it ensure high data security.

REFERENCES
[1] Huang Qin-Long, MA Zhao, YANG Yi-xian, FU Jing-yi,NIU Xin-xin “Secure and privacy-preserving DRM scheme

using Homomorphic Encryption in Cloud computing” National Engineering Laboratory for Disaster Backup and Recovery,
Beijing University of Posts and Telecommunications, Beijing 100876, China.

[2] Monique Ogburn, Monique Ogburn, Pushkar Dahalc “Homomorphic Encryption” The Journal of China Universities of
Posts and Telecommunications, Information Security Center, Beijing University of Posts and Telecommunications, Beijing
100876, China 3. Beijing National Security Science and Technology Co. Ltd, Beijing 100086, China.

[3] Sangho Lee, Heejin Park, Jong Kim “A Secure and Mutual-Profitable DRM Interoperability Schem” Computers and
Communications (ISCC), 2010 IEEE Symposium, pp. 75-80.

[4] Amit Sachan a, Sabu Emmanuel a, Amitabha Das a, Mohan S Kankanhalli “Privacy Preserving Multiparty Multilevel
DRM Architecture” Proceeding CCNC’09 Proceedings of the 6th IEEE Conference on Consumer Communications and
Networking Conference, pp. 1128-1132.

[5] Ryan Hayward, Chia-Chu Chiang “Parallelizing Fully Homomorphic encryption for a cloud environment”. Journal of
Applied research and technology 13(2015), pp. 245-252.

[6] Feng Chao, Xin Yang, “Fast key generation for Gentry-Style homomorphic encryption”, National Engineering laboratory
for disaster Backup and recovery, Beijing University of posts and telecommunications, Beijing 100876, China, December
2014, 21(6): 37-44, www.sciencedirect.com /Science/journal/10058885

[7] Hossein Rahmani, Elankovan Sundarajan, Zulkarnain Md. Ali, Abdullah Mohd Zin, “Encryption as a Service (EaaS) as
a solution of cryptography in cloud”, Faculty of Information Science and technology, Universiti Kebangsaan Malaysia,
The 4th International Conference on Electrical Engineering and Informatics (ICEEI 2013)

[8] Jung Hee Cheon, Hyunsook Hong, Moon Sung Lee, Hansol Ryu, “The polynomial approximate common divisor problem
and its application to the fully homomorphic encryption”, Department of Mathematical Sciences, Seoul National University,
1 Gwanak-ro, Gwanak-gu, Seoul, pp. 151-742.

