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Abstract

In this paper we show that an arc is strong iff`it is in at least one maximum
spanning tree of a fuzzy graph.

1. INTRODUCTION

This paper is a continuation of the study of the concept of strong arcs in a fuzzy
graph[4].

A fuzzy graph [7] is a pair G : (� , µ) where � is a fuzzy subset of a set S and µ
is a fuzzy relation on � such that µ (u, v) � � (u) �� (v). We assume that S is finite
and nonempty, µ is reflexive and symmetric [7]. Also, we denote the underlying
crisp graph by G* : (�* , µ*) where �* = {u�S : � (u) > 0 } and µ* = {(u, v) �SXS:
µ (u , v) > 0}. A fuzzy graph H : (�, �) is called a partial fuzzy subgraph of G : (�,
µ), if � � � and � � µ [6]. In particular, we call H : (� , �), a fuzzy subgraph of G :
(�, µ), if � (u) = � (u) for every u��* and � (u , v) = µ (u , v) for every (u , v) ��*. A
path P of length n is a sequence of distinct nodes u

0
, u

1
,……..u

n
 such that µ (u

i–1
, u

i
)

> 0, i = 1, 2...... n and the degree of membership of a weakest arc is defined as its
strength. If u

0
 = u

n
 and n � 3, then P is called a cycle and P is called a fuzzy cycle

if it contains more than one weakest arc [5]. G : (�, µ) is called a complete fuzzy
graph if µ (u , v) = � (u) ��� (v) for all u, v. The strength of connectedness between
two nodes x and y is defined as the maximum of the strengths of all paths between
x and y and is denoted by CONN

G
 (x, y). An x – y path P is called a strongest x – y

path if its strength equals CONN
G
(x, y) [7].

A fuzzy graph G: (� , µ) is connected if for every x, y in �*, CONN
G
(x, y) > 0.

An arc of a fuzzy graph is called strong if its weight is at least as great as the
connectedness of its end nodes when it is deleted and an x – y path P is called a
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strong path if P contains only strong arcs [4].

An arc is called a fuzzy bridge of G if its removal reduces the strength of
connectedness between some pair of nodes in G. A connected fuzzy graph G: (�, µ)
is a fuzzy tree if it has a partial fuzzy spanning subgraph T: (�, �), which is a tree,
where for all arcs (x , y) not in T there exists a path from x to y in T whose strength
is more than µ (x, y) [6]. A maximum spanning tree of a connected fuzzy graph G:
(�, µ) is a fuzzy spanning subgraph T: (�, �) such that T* is a tree and for which
�

u�v
 � (u, v) is maximum [1].

2. ARCS IN A MAXIMUM SPANNING TREE

Note that if G is a fuzzy tree, then it has a unique maximum spanning tree T [9] and
all arcs in T are just the strong arcs in G[4]. The propositions 4, 5 and 6 of [4] can
be obtained as corollaries to the following theorem.

Theorem 1: An arc in a fuzzy graph G is strong if and only if it is an arc of
atleast one maximum spanning tree of G.

Proof: Let (x, y) be a strong arc in a fuzzy graph G: (�, µ). Then by definition,
µ (x, y) >0 and µ (x, y) � CONN

G-(x,y)
 (x, y). Consider the following two cases.

Case I

µ (x, y) > CONN
G-(x,y)

 (x, y).

Then, removal of (x, y) reduces the strength of connectedness between x and y,
which shows that (x, y) is a fuzzy bridge in G. Then (x, y) is an arc of every maximum
spanning tree of G[8].

Case II

µ (x, y) = CONN
G-(x,y)

 (x, y).

Then, (x, y) is an arc of some cycle C in G which contains an x – y path, say
P, of strength µ (x, y). This implies that C contains an arc (u, v) with µ (u, v) = µ
(x, y) and (x, y) and (u, v) are weakest arcs of C. Then it follows that there are
atleast two maximum spanning trees, say, T

1
 and T

2
 with the property that (x, y)

is in T
1
, (u, v) is not in T

1
 and (x, y) is not in T

2
, (u, v) is in T

2
, which completes the

proof.

Conversely, assume that (x, y) is an arc of a maximum spanning tree T: (�, �)
of G and that (x, y) is not strong. Then by definition, µ (x, y) < CONN

G-(x,y)
 (x, y).
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This implies that there exists an x – y path, say P, whose arcs having strength
greater than that of (x, y). Then replacing the arc (x, y) by the path P in T results in
another spanning tree whose total weight exceeds that of T, contradicting our
assumption that T is a maximum spanning tree of G. Thus (x, y) should be strong.

Note that it also follows that all arcs in a maximum spanning tree are
strong.

Corollary 1: If G is a fuzzy tree, then an arc of G is strong if and only if it is an
arc of the maximum spanning tree of G.

Corollary 2: G is a fuzzy tree if and only if there is a unique strong path in G
between any two nodes of G.

Corollary 3: In a fuzzy tree, a strong path between any two nodes u, v is a
strongest u–v path.

Remark: Note that all arcs in a fuzzy cycle [2] and a complete fuzzy graph [3]
are strong, but a fuzzy graph with all its arcs strong and whose underlying graph is
complete, need not be a complete fuzzy graph as in the following example.

Example: Consider the fuzzy graph G:(�, µ)with �* = {u, v, w, x} and � (u) =
� (w) = 1, � (v) = .8, � (x) = .5, µ (u, v) = µ (v, w) = .8, µ(u , x) = µ (x, w) = µ (x, v)
= .4, µ (u, w) = 1. It can be easily verified that all arcs are strong. But G is not a
complete fuzzy graph.
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