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SOME PROPERTIES OF THE INHOMOGENEOUS PANJER

PROCESS

ANA MARÍA BELTRÁN CORTÉS AND JOSÉ ALFREDO JIMÉNEZ MOSCOSO*

Abstract. The classical processes (Poisson, Bernoulli, negative binomial)

are the most popular discrete counting processes; however, these rely on
strict assumptions. We studied an inhomogeneous counting process (which
is known as the inhomogeneous Panjer process - IPP) that not only includes
the classical processes as special cases, but also allows to describe counting

processes to approximate data with over- or under-dispersion. We present the
most relevant properties of this process and establish the probability mass
function and cumulative distribution function using intensity rates. This
counting process will allow risk analysts who work modeling the counting

processes where data dispersion exists in a more flexible and efficient way.

1. Introduction

The Panjer’s recursion was introduced by [29] as a reparametrization of the
recurrence formula given in [22]. The Panjer’s aim was to propose a family of dis-
tributions to modelate the number of claims incurred in a fixed period of time in
an insurance portfolio. The class of frequency distributions based in the Panjer’s
recursion allows obtaining as a particular cases other classical probability mass
functions by simply modifying or choosing its parameters, among which are bi-
nomial, negative binomial or Poisson (See [36]). Panjer’s family of distributions
has been used in the context of statistical modelling and simulation studies that
include such topics as the analysis of the Collective Theory of Risk when it is
assumed that the distribution of the size of the claims also has an integer value.

In this paper we study the claim number process {N(t), t ≥ 0} and use a more
general counting process: a counting process based on Panjer recursion. The at-
traction of this counting process is that, analogous to the family of frequency
distributions, it allows to generate a large class of counting processes. Among
them, it is possible to obtain as a particular case the binomial, the negative bino-
mial, the Poisson process, among other classical processes, and this allows us to
obtain models for counting process with over- or under-dispersion. The Inhomoge-
neous Panjer process (IPP) was first introduced by [17] and studied later by [19],
some of the properties of the Panjer process found by these authors are shown in
this document and we also obtain other properties of the IPP using the transition
intensities.
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2 A.M. BELTRÁN AND J.A. JIMÉNEZ

The purpose of this paper is to offer an unified exposition of related results on
the inhomogeneous Panjer process. The paper is organized as follows: Section 2
presents the counting IPP. Section 3 presents its statistical properties: pmf, pgf
and measures of mean and variance are derived. Section 4 presents different ex-
pressions of the IPP using classical counting processes. In section 5 we demonstrate
additional properties of the IPP. Finally, conclusion is presented.

2. Definition of the IPP

Let N(t) the number of occurrences of an event, for example claims for an
insurance portfolio, in the time interval (0, t] with t > 0 and N(0) = 0. The
probability of n claims occurring in the time interval (0, t] is expressed as

Pn(t) = P [N(t) = n], n = 0, 1, 2, . . . (2.1)

[17] presents the counting process based on Panjer recursion as an alternative to
model the claim number process in the classical model risk. The general expression
of Pn(t) is:

Pn(t) =

(
αt +

βt

n

)
Pn−1(t), ∀n > 0 (2.2)

where αt and βt are continuous functions of t with αt < 1. We say that the
process N(t) is an Inhomogeneous Panjer Process (IPP) if it satisfies the recursion
formula (2.2).

Assume that Pn−1(t) > 0 in the recursion (2.2) holds

Pn(t)

Pn−1(t)
= αt +

βt

n
(2.3)

which is a very useful expression to decide if a counting process is or not an IPP,

i.e. if the ratio
Pn(t)

Pn−1(t)
can be written in the form (2.3) then the counting process

N(t) is an IPP.
In order to present some results from (2.3) we define for αt ̸= 0

ξt =
αt + βt

1− αt
, κt =

αt

1− αt
and ρt =

ξt
κt

(2.4)

Note that if αt tends to zero then ξt tends to βt but ρt is indeterminate.
In the table 1 we summarize the expressions for αt and βt for some counting

processes. [19] present these counting processes in terms of an intensity function

Θ(t) =
∫ t

0
λ(υ)dυ and calculate the expressions αt and βt associated with these

processes. We assume that λ(υ) = {δ−1, δe−δv}, where δ is a non-negative real
number, for establish the Pn(t) in the table 1, in addition, the parameter γ is a
positive constant. The generalized counting processes were studied in [2] and [26].
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SOME PROPERTIES OF THE IPP 3

Table 1: Functions αt and βt for some counting processes

Counting
Pn(t)

Functions

process αt βt

C
la
ss
ic
a
l

Poisson
(γt)n

n!
e−γt 0 γt

Negative (
γ + n− 1

n

)(
δ

δ + t

)γ (
t

δ + t

)n
t

δ + t

(γ − 1)t

δ + t
binomial

(or Pólya)

Geometric

(
δ

δ + t

)(
t

δ + t

)n

and δ > 0
t

δ + t
0

Binomial

(
M

n

)(
t

δ

)n (
1− t

δ

)M−n

, t < δ
t

t− δ

(M + 1)t

δ − t

O
th

e
r

Generalized (
γ + n− 1

n

)
e−γδt(1− e−δt)n 1− e−δt γ − 1

(1− e−δt)−1Negative

binomial

Generalized
(
M

n

)
e−nδt

(
1− e−δt

)M−n e−δt

e−δt − 1

(M + 1)e−δt

1− e−δtbinomial

Generalized
e−δt

(
1− e−δt

)n
1− e−δt 0

geometric

3. Properties of the IPP

For the classical counting processes considered in table 1, it’s not difficult to
verify that all the functions given in (2.4) satisfy that κt and ξt are linear functions
of t and so that the function ρt reduces to a constant (say ρ). That is,

ξt =ξt, κt = κt and ρt =ρ (3.1)

The values of the constants ξ, κ and ρ for the classical counting process are:

Table 2. Values for ξ, κ and ρ ([19])

Counting Negative
Geometric Binomial

process Binomial

ξ γδ−1 δ−1 Mδ−1

κ δ−1 δ−1 −δ−1

ρ γ 1 −M

Note that ρ and κ are nonnegative constants always that αt < 1 and αt ̸= 0.
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4 A.M. BELTRÁN AND J.A. JIMÉNEZ

Theorem 3.1. Let N(t) be an IPP and the functions ξt and κt satisfy (3.1) then

i) The probability generating function (pgf) of N(t) is given by

GN (z; t) = E
[
zN(t)

]
=

{
(1− κt(z − 1))−ρt if αt ̸= 0

exp{βt(z − 1)} if αt = 0
(3.2)

ii) The probability mass function (pmf) of N(t) for fixed t satisfies

Pn(t) =
G

(n)
N (0; t)

n!
=




(
ρ+ n− 1

n

)
αn
t P0(t) if αt ̸= 0

βn
t

n!
P0(t) if αt = 0

(3.3)

where

P0(t) = GN (0; t) =

{
(1 + κt)−ρ if αt ̸= 0

exp{−βt} if αt = 0
(3.4)

iii) If αt + βt > 0 the pmf of N(t) satisfies

Pn(t) =
(−1)n

n!
tnP

(n)
0 (t), n ≥ 0 (3.5)

where P
(n)
0 (t) = dn

dtnP0(t)

P0(t) = exp{−φ(t)} with φ(t) =

t∫

0

ρκ

1 + κv
dv. (3.6)

iv) The Pn(t) satisfies the relation

Pn+1(t)

Pn(t)
=

−t

n+ 1

P
(n+1)
0 (t)

P
(n)
0 (t)

=
n+ ρ

n+ 1

κt

1 + κt
=

κ(ρ+ n)

1 + κt

t

n+ 1
. (3.7)

v) The mean and variance of N(t) are given by

E[N(t)] =

{
ρκt if αt ̸= 0

βt if αt = 0
(3.8)

and

V ar[N(t)] = (1 + κt)E[N(t)] (3.9)

Proof. See [19]. □

Note that from (3.8) we have that if αt ̸= 0 then:

lim
t→∞

E[N(t)]

t
= ρκ. (3.10)

With the mean and the variance of the IPP is possible calculate its dispersion
index (variance-to-mean ratio VMR) and obtain:

ID(t) =
V ar[N(t)]

E[N(t)]
= 1 + κt. (3.11)
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SOME PROPERTIES OF THE IPP 5

As ID(t) > 1 (if 0 < αt < 1) then using the definition of the VMR we have that
the IPP is an over dispersed counting process and hence is appropriate to model
claims frequency of a portfolio with many levels of risk.

Remark 3.2. If in the expression (3.4) we put ρ = ξt/κt mentioned in (2.4) and
we take the limit when κ tends to 0, which means that αt → 0, we have:

lim
κ→0

(1 + κt)−ξt/κt = e−ξt (3.12)

and this expression is in agreement with the respective of P0(t) of a Poisson process
with rate ξt.

4. IPP in Terms of Classical Counting Processes

In this section we present different expressions of the IPP using classical count-
ing process.

4.1. IPP as pure birth process. Taking the derivate of the expression (3.5)
we obtain

P ′
n(t) =

n

t

(
(−1)n

n!
tnP

(n)
0 (t)

)
+

(−1)n

n!
tnP

(n+1)
0 (t) (4.1)

By the first equality in (3.7) it follows

P ′
n(t) =

n

t
Pn(t) +

(−1)n

n!
tnP

(n)
0 (t)

(
−κ(ρ+ n)

1 + κt

)

=
n

t
Pn(t)−

κ(ρ+ n)

1 + κt
Pn(t) (4.2)

From the expression of relation pmf given in (3.7) and substituting in (4.2) we
get:

P ′
n(t) =

κ(ρ+ n− 1)

1 + κt
Pn−1(t)−

κ(ρ+ n)

1 + κt
Pn(t). (4.3)

As a particular case of (3.6) we obtain the following expression for the first derivate
of P0(t):

P ′
0(t) = − κρ

1 + κt
P0(t). (4.4)

If we denote

λn(t) =
κ(ρ+ n)

1 + κt
. (4.5)

Then from (4.3), (4.4) and (4.5) we have that the IPP satisfies the following system
of differential equations:

P ′
0(t) = −λ0(t)P0(t)

P ′
n(t) = λn−1(t)Pn−1(t)− λn(t)Pn(t) for n ≥ 1 (4.6)

with initial conditions

P0(0) = 1 and Pn(0) = 0 ∀n ≥ 1 (4.7)

From the last system of equations we have that the IPP is a pure birth process
agree with the definition given in [34].

So, if N(t) satisfies (2.2) then N(t) is an inhomogeneous pure birth process with
transition intensities given by λn(t).
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6 A.M. BELTRÁN AND J.A. JIMÉNEZ

Substituting the expressions of the table 2 in (4.5) we obtain the formulas of
the transition intensities λn(t) for the classical counting processes:

Table 3. Expressions for λn(t) for classic counting processes

Counting Negative Geometric Binomial

process Binomial

λn(t)
γ + n

δ + t

1 + n

δ + t

M − n

δ − t

4.2. IPP as mixed Poisson process. Mixed Poisson Process (MPP) has been
studied by several authors, e.g. [14], [27] and [21]. According to [27]: A mixed Pois-
son process N(t) is a Poisson process with mean Λ, where Λ is a random variable
non-negative that is called structure variable. [25] presents a list of equivalences
that are satisfied by the IPP defined in (2.2). These are those properties:

Theorem 4.1. Let N(t) be an IPP with transition intensities λn(t) and marginal
distribution Pn(t). The following three statements are equivalent:

i) λn(t) satisfies λn+1(t) = λn(t)− λ′
n(t)

λn(t)
for n = 0, 1, . . .

ii) λn(t) and Pn(t) satisfy the relation

Pn(t)

Pn−1(t)
=

t

n
λn−1(t) for n = 1, 2, . . . (4.8)

iii) N(t) is a mixed Poisson process.

Proof. i) Taking the derivative of (4.5) we obtain

λ′
n(t) =

−κ2(ρ+ n)

(1 + κt)
2 (4.9)

from here

λn(t)−
λ′
n(t)

λn(t)
=

κ(ρ+ n)

1 + κt
−

−κ2(ρ+n)
(1+κt)2

κ(ρ+n)
1+κt

=
κ(ρ+ n)

1 + κt
+

κ

1 + κt
=

κ(ρ+ (n+ 1))

1 + κt
= λn+1(t). (4.10)

ii) From the last equality established in (3.7) we get:

Pn(t)

Pn−1(t)
=

κ(ρ+ (n− 1))

1 + κt

t

n

Using the definition of λn(t) given in (4.5), the last expression can be rewritten
as follows:

Pn(t)

Pn−1(t)
=

t

n
λn−1(t)

which complete the proof.
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SOME PROPERTIES OF THE IPP 7

iii) When the structure variable, Λ, is a continuous random variable with proba-
bility density function (pdf), f(λ), we get

E
[
P [N(t) = n|Λ]

]
=

∞∫

0

P
[
N(t) = n|Λ = λ

]
f(λ)dλ

P [N(t) = n] =

∞∫

0

e−λt (λt)
n

n!
f(λ)dλ. (4.11)

We wish to express Pn(t) as in (4.11) for some random variable Λ.

If Λ has a Gamma distribution with parameters ρ and
1

κ
, i.e., Λ ∼ Γ(ρ, 1/κ)

then (4.11) takes the form:

Pn(t) =

∞∫

0

e−λt (λt)
n

n!

λρ−1

κρΓ(ρ)
e−

1
κλdλ =

tn

n!

1

κρΓ(ρ)

∞∫

0

e−λ(t+ 1
κ )λn+ρ−1dλ

Put u = λ
(
t+ 1

κ

)
thus that du =

(
t+ 1

κ

)
dλ. We have

Pn(t) =
tn

κρ

1

n!Γ(ρ)

∞∫

0

e−u

(
u

t+ 1/κ

)n+ρ−1
1

t+ 1/κ
du

=
tn

κρ

1

n!Γ(ρ)

(
1

t+ 1/κ

)n+ρ
∞∫

0

e−uun+ρ−1du

=
Γ(n+ ρ)

n!Γ(ρ)

tn

κρ

(
κ

1 + κt

)n (
κ

1 + κt

)ρ

=

(
ρ+ n− 1

n

)
αn
t P0(t)

the above expression is consequence of the equation (2.4).
The last expression implies that N(t) is a mixed Poisson process with structure

distribution Gamma. We get that the IPP is equivalent to the pmf of a negative
binomial (or Pólya) process given in table 1. □
Corollary 4.2. If N(t) is an IPP with transition intensities λn(t) then

Pn(t)

P0(t)
=

n∏
j=1

t λj−1(t)

j
(4.12)

Proof. Note that

Pn(t)

P0(t)
=

n∏
j=1

Pj(t)

Pj−1(t)
.

Substituing (4.8) in the above expression we get the result. □
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8 A.M. BELTRÁN AND J.A. JIMÉNEZ

[27] establishes additional properties that the IPP also satisfies:

Proposition 4.3. Let {N(t); t ≥ 0} be an IPP and Λ the structure variable of the
associated mixed Poisson process. Then:

(1) The transition intensities are such that

E [Λ|N(t) = n] = λn(t). (4.13)

and

V ar [Λ|N(t) = n] = −λ′
n(t). (4.14)

(2) The mean of N(t) is given by

E[N(t)] = tE[Λ]. (4.15)

(3) The mean of Λ is given by

E[Λ] = −P ′
0(0). (4.16)

Proof.

(1) From (4.11), taking the expected value of Λ, conditioning on N(t) we get

E [Λ|N(t) = n] =

∞∫

0

λe−λt (λt)
n
f(λ)

n!P [N(t) = n]
dλ =

n+ 1

t

Pn+1(t)

Pn(t)
. (4.17)

The above expression coincides with the expression (4.8). Then

E [Λ|N(t) = n] = λn(t).

Analogously, we can show that

E
[
Λ2|N(t) = n

]
=

∞∫

0

λ2e−λt (λt)
n
f(λ)

n!P [N(t) = n]
dλ =

(n+ 2)(n+ 1)

t2
Pn+2(t)

Pn(t)
. (4.18)

By substituting (4.8) into (4.18) we have

E
[
Λ2|N(t) = n

]
= λn+1(t)λn(t).

Then the conditional variance of Λ given that N(t) = n is

V ar [Λ|N(t) = n] = λn+1(t)λn(t)− λ2
n(t),

and substituting equation (4.10) into above yields the result.
(2) Using the law of total expectation

E[Λ] =E [E(Λ|N(t) = n)] =
∞∑

n=0

E(Λ|N(t) = n)Pn(t)

=
∞∑

n=0

λn(t)Pn(t)

Substituting (4.8) into the above expression we have

E[Λ] =
∞∑

n=0

n+ 1

t
Pn+1(t) =

1

t
E[N(t)].
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SOME PROPERTIES OF THE IPP 9

Given that the structure variable Λ is gamma distributed with parameters
ρ and 1

κ then E[Λ] = ρκ and it coincides with expression (3.10). And the
proof is completed.

(3) The pgf of N(t) is defined as

GN (z; t) =
∞∑

n=0

znPn(t) =
∞∑

n=0

zn
∞∫

0

(λt)n

n!
e−λtf(λ)dλ

P0[(1− z)t] =

∞∫

0

[ ∞∑
n=0

(zλt)n

n!

]
e−λtf(λ)dλ =

∞∫

0

eλ(z−1)tf(λ)dλ

=MΛ[(z − 1)t].

Taking z = 0 in the above expression, we get

P0(t) = MΛ(−t) (4.19)

Now if we differentiate both sides with respect to t, we have

P ′
0(t) = −M ′

Λ(−t)

and evaluating at t = 0 we complete proof. □

By uniqueness property of moment generating function, on comparing expres-
sion (4.19) with Pn(t) for n = 0 and shown in the table 1 we find the Poisson
Process if the structure variable Λ ∼ δγ(λ) (i.e. has a degenerate distribution in
λ = γ), the Negative Binomial Process if Λ ∼ Γ(γ, δ), the Geometric Process if
Λ ∼ exp(δ).

4.3. IPP as a Pólya process. In (3.3) we present an expression of Pn(t) in
terms of αt and P0(t):

Pn(t) =

(
ρ+ n− 1

n

)
αn
t P0(t).

Given that P0(t) = (1 + κt)−ρ =

(
1

1 + κt

)ρ

=

(
1
κ

1
κ+t

)ρ

whenever αt ̸= 0, and

from the expression of κt given in (2.4) we get in (3.3):

Pn(t) =

(
ρ+ n− 1

n

)(
κt

1 + κt

)n

P0(t) =

(
ρ+ n− 1

n

)(
t

1
κ + t

)n

P0(t)

=

(
ρ+ n− 1

n

)(
t

1
κ + t

)n ( 1
κ

1
κ + t

)ρ

(4.20)

Taking δ = 1
κ and γ = ρ in (4.20) we obtain, that the IPP is equivalent to the

pmf of a negative binomial (or Pólya) process given in table 1.
We can apply the characterization of a Pólya process presented in [25] to the

IPP. The following theorem summarizes the mentioned characterization:

Theorem 4.4. Let N(t) be an IPP with transition intensities λn(t). The following
statements are equivalent:

i) N(t) is a pólya process or a Poisson process.
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10 A.M. BELTRÁN AND J.A. JIMÉNEZ

ii) for a fixed t, the transition intensities λn(t) is linear in n.
iii) λn(t) is a product of two factors, one depending on n and the other on t.
iv) There exists a transformation A(t) = 1

κ (e
at − 1) with a ∈ R+ such that the

process NA(t) defined by NA(t) = N(A(t)) is a homogeneous birth process.

Proof. i) See the proof of (4.20).
ii) By the definition of λn(t) given in (4.5) we get, for any fixed t:

λn(t) =
κ(ρ+ n)

1 + κt
=

κρ

1 + κt
+

κ

1 + κt
n (4.21)

which is a linear function in n.
If we denote a(t) =

κρ

1 + κt
and b(t) =

κ

1 + κt
then (4.21) can be rewritten

in the following way

λn(t) = a(t) + b(t)n (4.22)

Using (4.5) we obtain:

a(t) = λ0(t) and b(t) = −λ′
0(t)

λ0(t)
= − d

dt
ln[λ0(t)]. (4.23)

Therefore λn(t) can be expressed in terms of λ0(t) as follows:

λn(t) = λ0(t)−
λ′
0(t)

λ0(t)
n. (4.24)

iii) Again, from (4.5) we get

λn(t) = (ρ+ n).
κ

1 + κt
=

ρ+ n

ρ
· λ0(t). (4.25)

Which implies that λn(t) is the product of two factors: a sequence depending
on n and a function depending on t.

iv) To see that the process NA(t) relative to N(t) is a homogeneous birth process
we have to prove that its transition intensities λA

n (t) are not depend of time
t and that PA

n (t) satisfies (4.6).
According to [14] we have

λA
n (t) = λn(A(t))A′(t) (4.26)

For the IPP if we replace the transformation A(t) in the expression (4.5)
then (4.26) takes the form:

λA
n (t) =

ρ+ n
1
κ +

(
1
κ (e

at − 1)
) · a

κ
eat = a(ρ+ n) (4.27)

Note that λA
n (t) doesn’t depends on t and is denoted by λA

n .
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SOME PROPERTIES OF THE IPP 11

As well, like NA(t) = N(A(t)) then from (3.3) whenever αt ̸= 0 we have

PA
n (t) =

(
ρ+ n− 1

n

)(
κ
(
1
κ (e

at − 1)
)

1 + κ
(
1
κ (e

at − 1)
)
)n (

1

1 + κ
(
1
κ (e

at − 1)
)
)ρ

=

(
ρ+ n− 1

n

)(
1− 1

eat

)n(
1

eat

)ρ

=

(
ρ+ n− 1

n

)
(eat − 1)ne−a(ρ+n)t

=

(
ρ+ n− 1

n

)
e−aρt

(
1− e−at

)n
(4.28)

Note that the expression (4.28) is equivalent to the pmf of a generalized
negative binomial process given in table 1.

A particular important case of (4.28), when n = 0:

PA
0 (t) = e−aρt (4.29)

which derivative is
d

dt
PA
0 (t) = −(aρ)e−aρt (4.30)

From (4.27) it is clear that λA
0 = aρ and it is thus that (4.30) is equivalent to:

d

dt
PA
0 (t) = −λA

0 P
A
0 (t) (4.31)

On the other hand, taking natural logarithm in (4.28) we obtain:

ln(PA
n (t)) = ln

[(
ρ+ n− 1

n

)]
+ n ln(1− e−at)− aρt (4.32)

Derivating (4.32) respect to t we have:

1

PA
n (t)

d

dt
PA
n (t) =

n

1− e−at
(ae−at)− aρ

and then

d

dt
PA
n (t) =

(
na

1− e−at
e−at − aρ

)
PA
n (t)

=
na

1− e−at
e−atPA

n (t) + anPA
n (t)− a(ρ+ n)PA

n (t)

= na

(
ρ+ n− 1

n

)
(1− e−at)n−1e−aρt − a(ρ+ n)PA

n (t)

= a(ρ+ n− 1)PA
n−1(t)− a(ρ+ n)PA

n (t) (4.33)

Thus, using (4.27) we obtain the following expression

d

dt
PA
n (t) = λA

n−1P
A
n−1(t)− λA

nP
A
n (t) n ≥ 1 (4.34)

which is equivalent to (4.33).
Then, from (4.31) and (4.34) we get that the pmf PA

n (t) associated to the IPP
satisfies the differential equations given in (4.6) with transition intensities that
not depend of the parameter of time, λA

n , it means that is a homogeneous birth
process. □
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Corollary 4.5. If N(t) is an IPP with transition intensities λn(t) then

n−1∏
j=0

λj(t) =
Γ(ρ+ n)

Γ(ρ)

(
λ0(t)

ρ

)n

n ≥ 1. (4.35)

Proof. From (4.25) we get

n−1∏
j=0

λj(t) =

n−1∏
j=0

(
ρ+ j

ρ
· λ0(t)

)
=

Γ(ρ+ n)

Γ(ρ)

(
λ0(t)

ρ

)n

.

In the above expression, we write the product in terms of gamma functions to
finish the prove of corollary. □

Corollary 4.6. Let N(t) be an IPP with transition intensities λn(t). Then, for
all n ≥ 0, the pmf Pn(t) satisfies

Pn(t) =

(
ρ+ n− 1

n

)(
t

ρ
λ0(t)

)n

exp


−

t∫

0

λ0(v)dv


 . (4.36)

Proof. By substituting (4.35) into (4.12) we have

Pn(t)

P0(t)
=

tn

n!

Γ(ρ+ n)

Γ(ρ)

(
λ0(t)

ρ

)n

=

(
ρ+ n− 1

n

)(
tλ0(t)

ρ

)n

.

Finally, multiply by P0(t) = exp

{
−

t∫
0

λ0(v)dv

}
, which can easily be deduced from

the expression given in (3.6). This proves the corollary. □

Using the expression (4.36) we can explicitly calculate the probabilities Pn(t)
by only using the transition intensity λ0(t).

5. Additional Properties

In this section we will to present many others properties of the IPP.

5.1. Probability generating function. If ρ and κ satisfy (3.1) then the pgf
given in (3.2) takes the form:

GN (z; t) = E
[
zN(t)

]
=

{
(1 + κt(1− z))−ρ if αt ̸= 0

exp{−βt(1− z)} if αt = 0
(5.1)

Using the definition of P0(t) given in (3.4) we obtain that (5.1) can be rewritten
in the following way:

GN (z; t) = E
[
zN(t)

]
= P0((1− z)t) (5.2)
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5.2. Other expressions for Pn(t) in terms of λn(t). There are other expres-
sions for the Pn(t) similar to (4.12) and (4.36) that allows characterizing the IPP
in terms of its transition intensities are shown and proved below.

Proposition 5.1. Let N(t) be an IPP with transition intensities λn(t), then

Pn(t) =

(
ρ+ n− 1

n

)
(κt)n exp


−

t∫

0

λn(v)dv


 for n ≥ 0 (5.3)

Proof. For n = 0, from the first equation of the system (4.6) we have:

P ′
0(t) = −λ0(t)P0(t)

from here

ln(P0(t)) =

t∫

0

−λ0(v)dv (5.4)

and then,

P0(t) = exp


−

t∫

0

λ0(v)dv


 . (5.5)

Note that (5.5) is in agreement with the expression given in (3.6).
For n > 0, rewritting (3.3) whenever αt ̸= 0 we obtain:

Pn(t) =

(
ρ+ n− 1

n

)(
κt

1 + κt

)n (
1

1 + κt

)ρ

=

(
ρ+ n− 1

n

)
(κt)n exp {−(ρ+ n) ln(1 + κt)}

=

(
ρ+ n− 1

n

)
(κt)n exp


−

t∫

0

λn(v)dv


 (5.6)

i.e. (5.3) is satisfied for all n ≥ 0 and the proof is done. □

Proposition 5.2. Let N(t) be an IPP with transition intensities λn(t) then

P [N(t) > n] =

∫ t

0

λn(v)Pn(v)dv for n ≥ 0. (5.7)

Proof. By substituting (3.5) and (4.13) into (5.7) we have

∫ t

0

λn(v)Pn(v)dv =
(−1)n

n!

∫ t

0

(
− P

(n+1)
0 (v)

P
(n)
0 (v)

)
vn P

(n)
0 (v) dv

=
(−1)n+1

n!

∫ t

0

vn P
(n+1)
0 (v) dv. (5.8)

We’ll use integration by parts with:

x = vn and dy = P
(n+1)
0 (v) dv
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Then, the integration by parts gives us:
∫ t

0

λn(v)Pn(v)dv =
(−1)n+1

n!

[
vnP

(n)
0 (v)

���
t

0
− n

∫ t

0

vn−1 P
(n)
0 (v) dv

]

=− Pn(v)|t0 +
(−1)n

(n− 1)!

∫ t

0

vn−1 P
(n)
0 (v) dv.

As we have for n ≥ 1 : Pn(0) = 0, and using the expression (5.8) for the second
term, we have:

∫ t

0

λn(v)Pn(v)dv =− Pn(t) +

∫ t

0

λn−1(v)Pn−1(v)dv n ≥ 1. (5.9)

Using the previous result:
∫ t

0

λn(v)Pn(v)dv =− Pn(t)− Pn−1(t) +

∫ t

0

λn−2(v)Pn−2(v)dv = . . .

=−
n∑

j=1

Pj(t) +

∫ t

0

λ0(v)P0(v)dv = −
n∑

j=1

Pj(t)−
∫ t

0

P ′
0(v)dv

=−
n∑

j=1

Pj(t)− P0(v)|t0 = −
n∑

j=0

Pj(t) + P0(0)

=1− P [N(t) ≤ n],

which completes the proof. □

The expression (5.7) allows calculate the cumulative distribution function of an
IPP.

Corollary 5.3. Let N(t) be an IPP with transition intensities λn(t) then∫ ∞

0

λn(t)Pn(t)dt = 1 for n ≥ 0. (5.10)

Proof. From (5.9) we get
∫ ∞

0

λn(v)Pn(v)dv =− lim
t→∞

Pn(t) +

∫ ∞

0

λn−1(v)Pn−1(v)dv n ≥ 1.

As we have for n ≥ 1 : Pn(∞) = 0, and using the above recursive relationship:
∫ ∞

0

λn(v)Pn(v)dv = . . . =

∫ ∞

0

λ0(v)P0(v)dv = −
∫ ∞

0

P ′
0(v)dv

=P0(0)− lim
t→∞

P0(t).

From expression (3.4) we have:

P0(t) = (1 + κt)−ρ for ρ > 0 (5.11)

and we take the limit when t tends to ∞, which means that αt → 1, we get:
∫ ∞

0

λn(v)Pn(v)dv = 1− lim
t→∞

(1 + κt)−ρ = 1. □
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Proposition 5.4. Let N(t) be an IPP with transition intensities λn(t), then

exp


−

t+h∫

t

λn(v)dv


 =

P
(n)
0 (t+ h)

P
(n)
0 (t)

for h ≥ 0. (5.12)

Proof. By substituting (4.13) into (5.12) we have

exp


−

t+h∫

t

λn(v)dv


 =exp




t+h∫

t

P
(n+1)
0 (v)

P
(n)
0 (v)

dv




=exp




t+h∫

t

d
[
ln

(
P

(n)
0 (v)

)]



=exp
{
ln

[
P

(n)
0 (v)

]��t+h

t

}
=

P
(n)
0 (t+ h)

P
(n)
0 (t)

. □

Corollary 5.5. Let N(t) be an IPP. If P0(t, t + h) denotes the probability that
there are no claim occur in the time interval (t, t + h], that is P0(t, t + h) =
P (N(t+ h)−N(t) = 0) then

P0(t+ h) = P0(t) · P0(t, t+ h) for t, h ≥ 0. (5.13)

Proof. According to [8]

P (N(t+ h)−N(t) = 0) = exp


−

t+h∫

t

λ(u)du


 (5.14)

where λ(t) is the intensity function associated with the time-dependent (or non-
stationary) Poisson process. If we set n = 0 in (5.12) then we get

P0(t, t+ h) = exp


−

t+h∫

t

λ0(v)dv


 =

P0(t+ h)

P0(t)
(5.15)

Thus,

P0(t+ h) = P0(t) · P0(t, t+ h) for t, h ≥ 0. □

The relation obtained in (5.13) implies that, for none ocurrences, the IPP has
independent increments.

The next lemma establishes a property of the transition intensities that will be
used in the proof of following theorem.

Lemma 5.6. Let N(t) be an IPP with transition intensities λn(t). Then the
process satisfy

m∑
j=0

λ′
j(t)

λj(t)
= −m+ 1

ρ
· λ0(t) for all m ≥ 0. (5.16)
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Proof. In (4.10) we obtained a relation between the successive intensities of the
process N(t). We can rewrite this relation, using (4.25), as follows:

λ′
j(t)

λj(t)
= λj(t)− λj+1(t) = −1

ρ
· λ0(t) for all j ≥ 0. (5.17)

Thus, (5.16) turns out the mth partial sum of a telescoping serie and from here

m∑
j=0

λ′
j(t)

λj(t)
= −m+ 1

ρ
· λ0(t) for all m ≥ 0.

□

Theorem 5.7. Let N(t) be an IPP with transition intensities λn(t) and P0(t) =
P (N(t) = 0). Then the nth derivative of P0(t) is given by:

dn

dtn
(P0(t)) = P

(n)
0 (t) = (−1)n




n−1∏
j=0

λj(t)


P0(t) n ≥ 1. (5.18)

Proof. We will show this by induction. For n = 1 we have:

P ′
0(t) = (−1)1




1−1∏
j=0

λj(t)


P0(t) = −λ0(t)P0(t) (5.19)

which coincide with the first equation given in (4.6).
Induction assumption. We assume that (5.18) is valid for n = m, i.e.

P
(m)
0 (t) = (−1)m




m−1∏
j=0

λj(t)


P0(t)

And we will proof for n = m+ 1. We have

P
(m+1)
0 (t) =

d

dt
P

(m)
0 (t)

and then, by the induction assumption we obtain:

P
(m+1)
0 (t) =

d

dt


(−1)m




m−1∏
j=0

λj(t)


P0(t)




= (−1)m
d

dt




m−1∏
j=0

λj(t)


P0(t) + (−1)m




m−1∏
j=0

λj(t)


P ′

0(t)

= (−1)m



(

m−1∏
j=0

λj(t)

)(
m−1∑
j=0

λ′
j(t)

λj(t)

)
−

(
m−1∏
j=0

λj(t)

)
λ0(t)


P0(t)

= (−1)m+1




m−1∏
j=0

λj(t)


P0(t)

[
λ0(t) +

m

ρ
· λ0(t)

]
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the above expression is due to the equation (5.16) and factorize we get that

P
(m+1)
0 (t) = (−1)m+1




m∏
j=0

λj(t)


P0(t) (5.20)

Thus, by the induction principle we get that (5.18) is satisfied for all n ≥ 1 and
the proof is finished. □

Proposition 5.8. Let N(t) be an IPP with marginal pmf Pn(t), then satisfies that

i) Time dependent increments

lim
h→0

Pn,n+1(t, t+ h)

h
= λn(t)

ii) The probability that there are no claim occur in (t, t+ h] is

P0(t, t+ h) = 1− hλ0(t) + o(h) (5.21)

iii) The probability that one claim occurs in (t, t+ h] is

P1(t, t+ h) = hλ0(t)− o(h) (5.22)

iv) Faddy’s conjecture1: The transition intensities be an increasing sequence with
n, i.e,

λ0(t) < λ1(t) < . . . < λn(t), for any fixed t. (5.23)

then V ar[N(t)] > E[N(t)], this last inequality is reversed for a decreasing
sequence.

Proof. i) As the IPP is a mixed Poisson process then, according to [25], for i ≤ j
and 0 ≤ u < v, N(t) satisfies:

P (N(v) = j | N(u) = i)� �� �
Pi,j(u,v)

=

(
j

i

)(u
v

)i (
1− u

v

)j−i Pj(v)

Pi(u)
(5.24)

Replacing the expression for Pn(t) given in (3.3), when αt ̸= 0 we obtain
in (5.24) that the transition probabilities for the IPP are:

Pi,j(u, v) =

(
j

i

)(u
v

)i (
1− u

v

)j−i Pj(v)

Pi(u)

=

(
j

i

)(u
v

)i
(
v − u

v

)j−i



(
ρ+j−1

j

) (
κv

1+κv

)j (
1

1+κv

)ρ

(
ρ+i−1

i

) (
κu

1+κu

)i (
1

1+κu

)ρ




=

(
ρ+ j − 1

j − i

)(
κ(v − u)

1 + κv

)j−i (
1 + κu

1 + κv

)i+ρ

. (5.25)

Let i = n, j = n + 1, u = t and v = t + h in (5.25) and taking the limit
when h tends to 0 we obtained the proof. This means that the transition
intensities λn(t) represent the instantaneous transitions probabilities of the
process N(t).

1See [11].
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ii) Clearly the function P0(t) defined in (3.4) is continuous for t ≥ 0 and is

analytic due to P
(n)
0 (t) exists for all n ≥ 1. Thus, is possible express P0(t+h)

through a Taylor series as follows:

P0(t+ h) =
∞∑

m=0

hm

m!
P

(m)
0 (t) (5.26)

Substituing the expression for the mth derivative of P0(t) obtained given
by (5.18) in (5.26) we have:

P0(t+ h) = P0(t) +
∞∑

m=1

hm

m!


(−1)m




m−1∏
j=0

λj(t)


P0(t)


 (5.27)

Like P0(t+ h) satisfies (5.13) then (5.27) is equivalent to:

P0(t) · P0(t, t+ h) = P0(t)


1 +

∞∑
m=1

(−1)m
hm

m!




m−1∏
j=0

λj(t)




 (5.28)

Let n = m− 1 then:

P0(t, t+ h) = 1 +
∞∑

n=0

(−1)n+1 hn+1

(n+ 1)!




n∏
j=0

λj(t)




= 1− h

∞∑
n=0

(−h)n

(n+ 1)!




n∏
j=0

λj(t)


 (5.29)

From the expansion of the first terms of (5.29) we obtain:

P0(t, t+ h) = 1− hλ0(t) + o(h) (5.30)

where

o(h) =

∞∑
n=1

(−h)n+1

(n+ 1)!

n∏
j=0

λj(t) =
1

2
h2λ0(t)λ1(t)−

1

3!
h3λ0(t)λ1(t)λ2(t) + · · ·

The above function satisfies that limh→0 o(h)/h = 0 ([35]).
iii) From (5.30) and like P0(t, t+ h) = P (N(t+ h)−N(t) = 0) we get

P (N(t+ h)−N(t) > 0) = 1− P0(t, t+ h) (5.31)

Given that the IPP N(t) is a pure birth process then we have that in an
infinitesimal interval of time there can only be two situations: there is a birth
or there is not. Thus,

P (N(t+ h)−N(t) > 0) = P (N(t+ h)−N(t) = 1) = P1(t, t+ h)

Then, from (5.31) we obtain:

P1(t, t+ h) ≈ hλ0(t)− o(h) (5.32)

provided that h is infinitesimal.
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iv) Assume that ρ > 0 and n is any integer positive then

ρ < ρ+ 1 < ρ+ 2 < . . . < ρ+ n. (5.33)

Consequently, by dividing by ρ and multiplying by λ0(t), we obtain that the
expression (5.23) is satisfied and therefore the conjecture is fulfilled.

Note that if ρ < 0 (Table 2) by dividing by ρ inverts the inequality (5.33)
and multiplying by λ0(t), we have the reverse of expression (5.23).

The expression (5.23) allows identifying over- or under-dispersion of a counting
process which are classified according to the expression (3.11). □

Corollary 5.9. If N(t) is an IPP, then it doesn’t have independent increments.

Proof. From Theorem 4.1 we know that an IPP is a mixed Poisson process. Ac-
cording to [27], if {N(t), t ≥ 0} is a counting process with independent increments
then its transition intensities satisfy that λ0(t) = λ1(t), but by equation (5.23) we
have

λ0(t) <
ρ+ 1

ρ
· λ0(t) = λ1(t) for ρ > 0. (5.34)

And therefore, N(t) doesn’t have independent increments. □

The last result coincides with the property of the mixed Poisson process pro-
posed by [10] about dependent increments.

6. Conclusions

In this paper, we studied the inhomogeneous Panjer process and we presented
some properties of this process, which seems to be a good alternative and will
be useful for modelling counting process with over or under dispersion. A note-
worthy aspect is the provision of explicit analytical expressions for the probability
mass function and cumulative distribution function that are obtained by transition
intensity.
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7. Čižek, P. and Härdle, W. and Weron, R.: Statistical Tools for Finance and Insurance,

Springer, 2005.
8. Cox, D. R. and Lewis, P. A. W.: The Statistical Analysis of Series of Events, Chapman and

Hall, 1966.

141143



20 A.M. BELTRÁN AND J.A. JIMÉNEZ
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