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Abstract. Within a stochastic approach to Bose-Einstein Condensation we
point out some probabilistic counterparts of the relevant analytical results
due to Lieb, Yngvason and Seiringer about the behaviour of the quantum N-
body ground state energy under the so called Gross-Pitaevskii scaling limit.
In particular we focus our attention on a transition to chaos result for the
rigorously associated interacting N-particles system.

1. Introduction

The first experimental realization of the long-predicted Bose-Einstein conden-
sation (BEC) was obtained in 1995. This quantum phenomenon, in fact, has been
discovered 70 years before within the mathematical background of Quantum Me-
chanics. The basic idea was certainly due to Bose ([7]) in 1924, who proposed a
new quantum statistical description of photons as indistinguishable particles. In
1925 Einstein ([16]), on the base of Bose’s work, made the first proper prediction
of the strange phenomenon for a gas of non-interacting atoms and, successively,
also for massive particles.

In recent experiment ([27],[12]) a large amount of interacting Bose particles of
certain chemical species are confined in a trap at a suitable high dilution. When
the temperature is sufficiently low, the particles begin to behave as if almost all
of them were in the same quantum state, called the condensate state.

Some semi-rigorous mathematical treatment of the problem was due to Bo-
goliubov ([6]) and others during the 1950s and 1960. In particular Gross and
Pitaevskii in 1960 ([24],[41]) successfully proposed to model the many-body effects
in the condensate regime by a non linear on-site self interaction between particles
depending on the particle density itself. This gives rise to a peculiar non linear
Schrödinger equation obeyed by the condensate wave function.

On the mathematically rigorous level, the Gross-Pitaevskii (GP) theory has
been verified only for the ground state of the trapped interacting Bose gas by
Lieb, Seiringer and Yngvason (2001,[29]) and by Lieb, Seiringer (2002,[30]), within
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the standard Quantum Mechanics. This important physical mathematical result
succeeded in proving BEC from first principles, at least for the ground state,
by performing an appropriate scaling limit of infinite particles starting from the
original many-body Hamiltonian. See finally [1], [18] and [28] for the approach
to the time-stability of condensation and, in particular, for the derivation of the
time-dependent Gross-Pitaevskii equation. In [35] one can find a complete review
of the analytical mathematical aspect of BEC.

As regards the stochastic approaches to BEC, the main research’s line is that
of random point processes, Boson fields or general Cox processes either in the
ideal case ([22],[21],[20],[46],[17],[47],[49]), or in the interacting case ([48]) and also
within a Statistical Mechanics framework ([23]).

More recently other interesting descriptions were proposed. In [4], the authors
exploit models of spatial random permutations in relation to Feyman-Kac repre-
sentation of the quantum Bose gas. In [2] a model of N mutually repellent Brow-
nian Motions confined in a bounded space region is studied by a large deviation
principle.

Very recently BEC has been studied within Nelson’s Stochastic Mechanics in the
usual three-dimensional space. In [37] the interacting N-particles systems, which
can be rigorously associated to the quantum N-body Hamiltonian, was analyzed in
connection with the GP scaling limit. Precisely, starting from the N-body quantum
Hamiltonian, one can show that under the assumption of strictly positivity and
continuous differentiability of the many-body ground state wave function, it is
possible to rigorously defined an one-particle stochastic process, unique in law,
which describes the motion of a single particle in the condensate gas. In the
GP scaling limit, the one-particle process continuously remains outside a time
dependent random interaction set with probability one and its stopped version
converges, in a relative entropy sense, toward a Markov diffusion whose drift is
uniquely determined by wave function of the condensate.

In this paper we focus our attention on a transition to chaos result which says
that the sequence of symmetric probability measures describing our interacting N-
particles system is chaotic with respect to the limit probability measure uniquely
associated to the condensate wave function. The same probabilistic notion can
be expressed by proving a sort of law of large numbers satisfied by the (random)
empirical measures of the N particles, which provides their spatial empirical dis-
tribution, when the particles number goes to infinity.

The paper is organized as follows.

In Section 2 we briefly recall the Nelson stochastic approach to quantum me-
chanical treatment of the general N-body problem and we introduce the uniquely
associated interacting N-particles system. We also describe the Gross-Pitaevskii
quantum description of the BEC regime.

In Section 3 we explain the so called GP scaling limit and recall some fundamen-
tal analytical results due to Lieb, Yngvason and Seiringer regarding the behaviour
of the N-particles mean ground-state energy under this limit: the Energy Theorem,
the Energy Localization Theorem and the BEC Theorem. While the first affirms
the convergence of the mean ground state energy to the GP energy, the second
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states that, asymptotically, the finite kinetic energy of a single particle, and pre-
cisely the part due to interaction, is concentrated on small balls centered on the
points where the other particles are localized. Finally the BCE Theorem proves
that the n-reduced density matrix factorizes in the scaling limit. In particular we
report in Appendix the full proofs of the Energy and Energy Localization Theo-
rems, because of the essential role the theorems play in the stochastic framework
too.

In section 4 we show that the BEC Theorem allows to prove that our interacting
particles system under the GP scaling limit performs a transition to chaos with
respect to a natural asymptotic probability density. Moreover we recall the alter-
native suggestive formulation of the same result in terms of the empirical measures
of our interacting diffusions.

In Section 5 we define the one-particle process, a three dimensional diffusion
uniquely associated to the GP functional through the wave function of the con-
densate. Successively we introduce a suitable one particle relative entropy and
describe its behaviour in the GP asymptotic scenario.

2. Nelson Map and Bose-Einstein Condensation

Nelson’s Stochastic Mechanics allows to study quantum phenomena using dif-
fusion processes instead of the standard analytical tools of Quantum Mechanics.
While the formal stochastic equations have been firstly introduced by Fényes ([19]),
Nelson ([40]) was able to introduce a complete stochastic mechanical theory rep-
resenting nowadays an alternative approach to Quantum Mechanics. See [10] for
a very recent review on Stochastic Mechanics.

We will briefly explain the Nelson map that associates a well-defined diffusion
process to a solution of a Schrödinger equation.

Let ψ(x, t) be a solution of the equation:

i∂tψ(x, t) = Hψ(x, t) (2.1)

with ψ(x, 0) = ψ0(x), corresponding to the Hamiltonian operator:

H = − ~
2

2m
△+ V (x), (2.2)

where m denotes the mass of a particle, and V is some scalar potential.
Denoting by:

u(x, t) = Re[
∇ψ(x, t)
ψ(x, t)

] (2.3)

v(x, t) = Im[
∇ψ(x, t)
ψ(x, t)

] (2.4)

when ψ(x, t) 6= 0 and, otherwise, both u(x, t) and v(x, t) are set equal to zero. Let
us put

b(x, t) := u(x, t) + v(x, t). (2.5)

Let (Ω,F ,Ft, Xt), with Ω = C(R+,R
3), be the evaluation stochastic process

Xt(ω) = ω(t), with Ft = σ(Xs, s ≤ t) the natural filtration.

55



STEFANIA UGOLINI

Carlen ([9], Thm 2.1) proved that if the scalar potential V is a Rellich class
potential and ‖∇ψ0‖2 < +∞, then there exists a unique Borel probability measure
P on Ω such that

i)(Ω,F ,Ft, Xt,P) is a Markov process;
ii) the image of P under Xt has density ρ(t, x) := |ψ(x, t)|2;
iii) Wt := Xt −X0 −

∫ t

0 b(Xs, s)ds
is a (P,Ft)-Brownian Motion.

For a generalization to the case of Hamiltonian operators with magnetic poten-
tial see [42](Thm.2.2).

The continuity of the above Nelson-Carlen map, with respect to the total vari-
ation norm, when a sequence of scalar potentials Vn(t) converges in the Rellich
class, has been proved in [13]. For the extension to the electromagnetic case see
[42].

It is well known that Stochastic Mechanics is a real Newtonian Mechanics. In
fact Nelson ([40]), having introduced a natural mean stochastic acceleration aN ,
proved that the diffusion X satisfies the stochastic version of the second Newton’s
law

aN (Xt) = − 1

m
∇V (Xt). (2.6)

Moreover Guerra and Morato showed that X is critical for the mean classical
action functional ([26]). For the stochastic variational principles see also [36],[26],
[33] and [38].

Finally we recall that the generator of the Nelson diffusion is related to the
Hamiltonian H by a Doob’s transformation ([14] and [44] (Ch.VIII,Prop.3.9)). See
[3] for the explicit formulation of Doob’s transformation in a general Stochastic
Mechanics setting.

We adopt the following notations: capital letters for stochastic processes or,
otherwise, we will explicitly specify them, X̂ = (X1, ..., XN ) to denote arrays in
R

3N and bold letters for vectors in R
3.

In order to correctively model the recent experiments ([27],[12]) on BEC we
start from the following N-body Hamiltonian

HN =

N
∑

i=1

(− ~
2

2m
△i + V (ri)) +

∑

1≤i<j≤N

v(ri − rj), (2.7)

where V is a confining potential and v a pair-wise repulsive interaction potential.
As it is suitable for Bose particles it operates on symmetric wave functions in
L2(R3N ). Being the physical experiments realized at very low temperature, a
ground state approach to (2.7) is physically justified.

We consider the mean quantum mechanical energy

E[Ψ] = TΨ +ΦΨ, (2.8)

where

TΨ =
N
∑

i=1

∫

R3N

|∇iΨ|2dr1 · · · drN (2.9)
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is physically called the kinetic energy and

ΦΨ =

N
∑

i=1

∫

R3N

V (ri)|Ψ|2dr1 · · · drN +
1

2

N
∑

i=2

∫

v(r1 − ri)|Ψ|2dr1 · · · drN (2.10)

the potential energy. The variational problem associated to HN consists in min-
imizing E[Ψ] with respect to the complex-valued function Ψ in L2(R3N ) subject
to the constrain ‖Ψ‖2 = 1. If such a minimizing function Ψ0

N exists it is called a
ground state. The corresponding energy E0[Ψ

0
N ] given by

E0[Ψ
0
N ] := inf{E(Ψ) :

∫

|Ψ|2 = 1} (2.11)

is known as ground state energy.
Under suitable assumptions on the potentials V and v one can prove the exis-

tence of the ground state Ψ0
N of (2.7). As concerns uniqueness of the ground state

we mean that it is unique apart from an overall phase. For our purpose we need a
strictly positive and continuous differentiable ground state. See [43] (Thm.XIII.46
and XIII.47) for the regularities conditions on the potentials V and v implying
the strictly positivity and (XIII.11) for those implying the differentiability of the
ground state wave function.

We denote by X̂ the 3N -dimensional Nelson’s diffusion corresponding to the
ground state solution ψ0

N . It satisfies, in a weak sense, the following SDE

dX̂t =
∇(N)Ψ0

N

Ψ0
N

(X̂t)dt+ (
~

m
)

1
2 dŴt, (2.12)

where ∇(N) denotes the 3N -dimensional gradient and Ŵ is a 3N -dimensional
standard Brownian Motion. The process X̂, sometimes named the ground state
process, can be seen as a family of N one-particle three-dimensional interacting
diffusions (X1, . . . , XN ):

dX1 = b1(X̂t)dt+ dW 1
t

dX2 = b2(X̂t)dt+ dW 2
t

.... ....

.... ....

dXN = bN (X̂t)dt+ dWN
t , (2.13)

where (b1, b2, ..., bN) are the R
3-components of the R

3N vector drift b(X̂t) =
∇(N)Ψ0

N

Ψ0
N

.

When Bose-Einstein condensation occurs, the condensate is systematically de-
scribed by the order parameter φGP ∈ L2(R3), also called wave function of the
condensate, which is the minimizer of the Gross-Pitaevskii functional

EGP [φ] =

∫

(
~
2

2m
|∇φ(r)|2 + V (r)|φ(r)|2 + g|φ(r)|4)dr (2.14)
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under the L2-normalization condition
∫

R3

|φGP |2dr = 1 (2.15)

and where g > 0 is a parameter depending on the interaction potential v (see
also next assumption h3). Therefore φGP solves the stationary cubic non-linear
equation (in this context called Gross-Pitaevskii equation)

− ~
2

2m
△φ+ V φ+ 2g|φ|2φ = λφ, (2.16)

λ denoting the chemical potential. One can prove that φGP is continuously differ-
entiable and strictly positive ([29]).

In [34] the stochastic quantization approach for the system of N interacting
Bose particles has been exploited for the first time, in particular studying the
relevant consequences of working with a symmetric wave function.

It is proved in [37] that the Stochastic Mechanics of the N-body problem associ-
ated to HN uniquely determines a well defined stochastic process which describes
the motion of the single particle in the condensate, in the case of the Gross-
Pitaevskii scaling limit as introduced in [29], which allows to prove the existence
of an exact Bose-Einstein condensation for the ground state of HN ([29],[30]).

3. Mean Energy Rescaling and its Asymptotic Behaviour

For simplicity of notations, we will put ~ = 2m = 1.
The main mathematical tool for studying the system of N interacting diffusions

is the mean quantum mechanical energy (2.8), with ΨN denoting a solution of
the Schrödinger equation corresponding to HN . Putting ρN := |ΨN |2, the mean
energy (2.8) can be expressed in terms of the joint probability density of our

3N−dimensional process X̂ as:

E[ρN ] = E{
N
∑

i=1

[b2i (X̂) + V (Xi(t))] +
∑

1≤i<j≤N

v(Xi(t)−Xj(t))} (3.1)

bi being the drift of the interacting i-th particle, whose position is given by the
process Xi.

Following [29], we assume
h1) V (|ri|) locally bounded, positive and going to infinity when |ri| goes to

infinity.
h2) v smooth, compactly supported, non negative, spherically symmetric, with

finite scattering length a ([31] Appendix C).
We perform the following scaling, known as Gross-Pitaevskii (GP) scaling [29],
writing

h3)

v(r) = v1(
r

a
)/a2

a =
g

4πN
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where v1 has scattering length equal to 1 and remains fixed while N ↑ +∞.
Moreover g > 0 as a consequence of our assumptions on v.

In the GP limit the product Na remains fixed: this is experimentally justified
since N can be quite large, 1011 or more, and Na can vary from 1 to 104. Finally,
fixing Na means that the limit is a dilute one. In fact, being the asymptotic mean
density ρ̂ ∼ N , one has that

ρ̂a3 ∼ N−2 ≪ 1

i.e. the mean inter-particle distance ρ̂−1/3 is much larger than the scattering length
a. Moreover the GP limit is a dynamical one, where the kinetic and potential
energies remain comparable ([35]).

In [29] and [30] three important theorems are proven. We denote them as
Energy Theorem, Energy Localization Theorem and Bose Einstein Condensation
Theorem, and reformulate them with different notations for future convenience.

Theorem 3.1. (Energy) ([29]) Under the previous hypothesis h1),h2) h3) then

lim
N→∞

E[ρ0N ]

N
= E[ρGP ] (3.2)

and

lim
N→∞

∫

ρ0Ndr2 · · · drN = ρGP , (3.3)

where ρGP := |φGP |2, with φGP the minimizer of the Gross-Pitaevskii functional
(2.14), ρ0N := |Ψ0

N |2, with Ψ0
N the ground state of HN , and the convergence in

(3.3) is in weak L1(R3) sense.
Moreover, let φ0 denote the solution of the zero-energy scattering equation for v

(i.e. −△φ0(r)+ 1
2v(r)φ0(r) = 0) under the boundary condition lim|r|→+∞ φ0(r) =

1 and s =
∫

|∇φ0|2/(4πa). Then s ∈ (0, 1] and

lim
N↑∞

∫

R3N

|∇1

√

ρ0N (r1, ..., rN )|2dr1 · · · drN =

∫

R3

|∇√
ρGP (r)|2dr

+ gs

∫

R3

(ρGP (r))
2dr (3.4)

lim
N↑∞

∫

R3N

V (r)ρ0N (r1, ..., rN ))dr1 · · · drN =

∫

V (r)ρGP (r)dr (3.5)

lim
N↑∞

1

2

N
∑

j=2

∫

R3N

v(|r1−rj |)ρ0N (r1, ..., rN )dr1 ···drN = (1−s)g
∫

(ρGP (r))
2dr. (3.6)

The second theorem shows that asymptotically the interaction energy localizes
into small balls surrounding each particle.

Theorem 3.2. (Energy Localization) ([30]). Defining

FN (r2, ..., rN ) :=

( N
⋃

i=2

BN (ri)

)c

, (3.7)

59



STEFANIA UGOLINI

where ()c stands for complement and BN (r) denotes the open ball centered in r

with radius N− 1
3−δ, where 0 < δ ≤ 4

51 ,

lim
N↑∞

∫

R3(N−1)

dr2 · · · drN
∫

FN (r2,...,rN)

(
∇1

√

ρ0N
√

ρ0N
− ∇1

√
ρGP√
ρGP

)2ρ0Ndr1 = 0. (3.8)

Theorem 3.1 and Theorem 3.2 are really important because they allow to prove
the complete BEC for bosons in a trap ([30]).

The mathematical concept of BEC can be properly formulated in terms of the
one-particle density matrix, that is the operator on L2(R3) given by the kernel

γ(r, r′) =

∫

ΨN(r, r2, ..., rN) ·ΨN (r′, r2, ..., rN)dr2 · · · drN. (3.9)

Definition 3.3. Complete or exact BEC is defined to be the property that as
N ↑ +∞

γ(r, r′) −→ φ(r) · φ(r′) (3.10)

in some topology for density matrices.

Under the hypothesis h1),h2),h3), the following relevant theorem is proved in
[30].

Theorem 3.4. (BEC) For each fixed Na

lim
N↑+∞

γ(r, r′) =
√

ρGP (r) ·
√

ρGP (r′) (3.11)

in trace norm and in L2(R3 × R
3).

Proposition 3.5. BEC Theorem implies the complete condensation for all n-
particle reduced density matrices (n ≥ 1), i.e.

lim
N↑+∞

γn(r1, r2, ..., rn, r
′
1, r

′
2, ..., r

′
n) =

√

ρGP (r1) ·
√

ρGP (r′1) · · ·
√

ρGP (rn) ·
√

ρGP (r′n) (3.12)

where the convergence is in the same sense of Theorem 3.4.

The proof of Proposition 3.5 in [30] takes advantage of the second quantization
formalism. See [35] for an alternative proof in L2 spaces.

4. A Transition to Chaos Result

We illustrate a rigorous probabilistic counterpart, in the frame of Nelson’s Sto-
chastic Mechanics, of the three important quantum theorems we recalled in section
3.

We firstly observe that the fixed time joint probability density of (X1, ..., XN )
is given by ρ0N := |Ψ0

N |2, which is invariant under spatial permutations. In [37] it
has been proved that if Ψ0

N is the ground state of HN and it is strictly positive
and of class C1, then the three-dimensional processes {Xi}i=1,...,N are equal in
law.

From Proposition 3.5 we can derive the following
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Corollary 4.1. For N ↑ +∞ the n-particle marginal density (n ≥ 1)

ρ
(n)
N :=

∫

ρNdrn+1 · · · drN (4.1)

is such that

lim
N↑+∞

ρ
(n)
N = ρ⊗n

GP (4.2)

in the weak convergence sense.

Proof. We take n = 1 for simplicity. From Proposition 3.5 we have that when
N ↑ ∞

∫ ∫

(γ(r, r′)−
√

ρGP (r) ·
√

ρGP (r′))
2drdr′ −→ 0. (4.3)

Let us now reduce to the diagonal of the n-particle reduced density kernel γ. Ψ0
N

being continuous, this is meaningful (see [35] for a summary on technical results
about the reduction to the diagonal).

We obtain that when N ↑ ∞
∫

(ρ
(1)
N (r)− ρGP (r))

2dr −→ 0. (4.4)

By Schwarz inequality for all φ ∈ Cb(R
3)

|
∫

φ(ρ
(1)
N − ρGP )|dr ≤ ‖φ‖2‖ρ(1)N − ρGP ‖2 (4.5)

(with ‖ · ‖2 the L2-norm), i.e. the probability density ρ
(1)
N converges weakly to the

probability density ρGP . The proof is the same for n > 1. For example ρ
(2)
N (r1, r2)

converges weakly to ρGP (r1) · ρGP (r2), etc. �

Putting now E = R
3, let vN be the probability measures on EN having density

ρ0N and let vGP be the probability measure on E having density ρGP with respect
to the Lebesgue measure.

With the usual notation

< µ, φ >=

∫

φ(x)µ(dx) (4.6)

for a probability measure µ on E and φ ∈ Cb(E), we recall the following

Definition 4.2. ([45]). Let E be a separable metric space, uN a sequence of
symmetric probability measures on EN . We say that uN is u − chaotic, u a
probability measure on E, if for φ1, φ2, ..., φn ∈ Cb(E)

lim
N↑+∞

< uN , φ1 ⊗ φ2 ⊗ ...⊗ φn ⊗ 1 · · · 1 >=
n
∏

i=1

< u, φi > . (4.7)

The above definition can be reformulated by considering the standard projection
map of the uN on En and saying that the projection converges to u⊗n when N
goes to +∞ ([5], p.20).

Therefore, Proposition 3.5 and Corollary 4.1 allow to prove the following:
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Proposition 4.3. Under the hypothesis h1),h2),h3), the probability measures vN ,
uniquely associated to the Hamiltonian HN through the relation ρ0N = |Ψ0

N |2, Ψ0
N

denoting the ground state of HN , is vGP -chaotic according with the above Defini-
tion 4.2.

Let us now introduce, for N fixed, the so called empirical measure (see for
example [8])

XN (t) :=

∑N
i=1 δXi(t)

N
. (4.8)

where for all i: δXi(t) is a random measure on B(R3) such that, for all φ ∈ C0(R
3)

∫

φ(x)δXi(t)(dx) = φ(Xi(t)). (4.9)

Therefore, finally, the empirical measure is such that for all φ ∈ C0(R
3)

∫

φ(x)[XN (t)](dx) =

∑N
i=1 φ(Xi(t))

N
. (4.10)

In particular, for A ∈ B(R3)

[XN (t)](A) :=
♯{Xi(t) ∈ A}

N
(4.11)

i.e. the empirical measure of a set A is the relative frequency of particles which
stay in A at time t.

One can easily prove the following ([45])

Proposition 4.4. The two statements are equivalent:

a) vN is vGP -chaotic.

b) XN (t) =
∑

N

i=1 δXi(t)

N converge in law to the constant random variable vGP .

Proof. We report for completeness the implication a)=⇒ b) (for the other impli-
cation see [45])

Let us suppose that (4.7) is true for n = 1, 2, i.e.

lim
N↑+∞

∫

φ1(r1)ρ
(1)
N (r1)dr1 =

∫

φ1(r1)ρGP (r1)dr1, (4.12)

lim
N↑+∞

∫

φ1(r1)φ2(r2)ρ
(2)
N (r1, r2)dr1dr2 = [

∫

φ(r1)ρGP (r1)dr1)]
⊗2, (4.13)
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with φ1, φ2 ∈ Cb(E). Taking φ ∈ Cb(E) one has:

Eρ0
N

[(< XN − vGP , φ >)
2] = Eρ0

N

[(< XN , φ >)
2] + (< vGP , φ >)

2

− 2 < vGP , φ > Eρ0
N

[< XN , φ >]

= Eρ0
N

[(

∑N
i=1 φ(Xi)

N
)2] + (< vGP , φ >)

2 − 2 < vGP , φ > Eρ0
N

[

∑N
i=1 φ(Xi)

N
]

=
1

N2
{NEρ0

N

[(φ(X1))
2] +N(N − 1)Eρ0

N

[φ(X1) · φ(X2)]}+ (< vGP , φ >)
2

− 2 < vGP , φ > Eρ0
N

[φ(X1)]

=
1

N

∫

(φ(r1))
2ρ

(1)
N (r1)dr1 +

N − 1

N

∫

φ(r1) · φ(r2)ρ(2)N (r1, r2)dr1dr2

+ (< vGP , φ >)
2 − 2 < vGP , φ >

∫

φ(r1))
2ρ

(1)
N (r1)dr1, (4.14)

where the symmetry of ρ0N has been exploited. Sending N ↑ +∞ and using the
hypothesis one obtains b). �

The statement b) is a sort of law of large numbers. When N is finite the random
variables Xi are far from being independent, but asymptotically the N particles
behave as they were independent. In fact Corollary 4.1 says that the any finite
dimensional distribution of X̂ factorizes in the limit. This is the meaning of the
phrase: a transition to chaos, where chaos stays for independence.

In the BEC regime a single particle feels the interaction only when it arrives
very very near to another particle, as the Energy Localization Theorem points out.
Before that time it does not feel the interaction. From the probabilistic point of
view we recognize in the BEC regime a Poisson approximation one.

In the next section we will get a little more inside this stochastic picture.

5. One Particle Relative Entropy

In this section the results contained in [37] and in [39] are briefly exposed. The
Energy Theorem says that the one-particle marginal density of ρ0N converges to
ρGP in the weak L1(R3) sense. So we introduce a process XGP with invariant
measure ρGPdr and try to compare it with the generic interacting non markovian
diffusion X1(t) ([34]).

We assume that XGP is a solution of the SDE

dXGP
t := uGP (X

GP
t )dt+ (

~

m
)

1
2 dWt, (5.1)

where,

uGP :=
1

2

∇ρGP

ρGP
. (5.2)

We now try to compute the distance in relative entropy between the three-
dimensional one-particle non markovian diffusion X1 and XGP . To this extent we
introduce a 3N -dimensional process X̂GP which satisfies a stochastic differential
equation with the same diffusion coefficient as X̂ and drift ûGP , defined by

ûGP (r1, · · ·, rN ) = (uGP (r1), · · ·, uGP (rN )). (5.3)

63



STEFANIA UGOLINI

We consider the measurable space (ΩN ,FN ) where ΩN is C(R+ → R
3N ), and

FN is its Borel sigma-algebra. We denote by Ŷ := (Y1, . . . , YN ) the coordinate
process and by FN

t the natural filtration.
We denote by PN and PGP the measures corresponding to the weak solutions

of the 3N - dimensional stochastic differential equations

Ŷt − X̂0 =

∫ t

0

b̂N (Ŷs)ds+ Ŵt, (5.4)

Ŷt − X̂0 =

∫ t

0

ûGP (Ŷs)ds+ Ŵ ′
t , (5.5)

where X̂0 is a random variable with probability density equal to ρ0N , while Ŵt and

Ŵ ′
t are 3N -dimensional PN and PGP standard Brownian Motions, respectively.
In this section we use the shorthand notation

b̂Ns =: b̂N(Ŷs), ûNs =: ûGP (Ŷs).

In order to use Girsanov Theorem, we will assume that uGP is bounded. We recall
that under our hypothesis on the potentials v and V , ρGP is strictly positive and
in C1(R3)

⋂

L∞(R3) and therefore uGP ∈ L2(R3) (see [29], Thm 2.1). Then the
following finite energy conditions hold:

EPN

∫ t

0

‖b̂Ns ‖2ds <∞, (5.6)

EPN

∫ t

0

‖ ûGP
s ‖2ds <∞, (5.7)

which follow from the fact that Ψ0
N is the minimizer of EN [Ψ], and our hypothesis

on uGP .
Then, by Girsanov’s theorem, we have, for all t > 0,

dPN

dPGP
|Ft

= exp{−
∫ t

0

(b̂Ns − ûGP
s ) · dŴs +

1

2

∫ t

0

‖b̂Ns − ûGP
s ‖2ds}, (5.8)

where |.| denotes the Euclidean norm in R
3N . The relative entropy restricted to

Ft reads

H(PN ,PGP )|Ft
=: EPN

[log
dPN

dPGP
|Ft

] =
1

2
EPN

∫ t

0

‖b̂Ns − ûGP
s ‖2ds. (5.9)

Since under PN the 3N -dimensional process Ŷ is a solution of (5.4) with in-
variant probability density ρ0N , we can write, recalling also (5.6) and (5.7),

1

2
EPN

∫ t

0

‖b̂Ns − ûGP
s ‖2ds

=
1

2

∫ t

0

EPN
‖b̂Ns − ûGP

s ‖2ds

=
1

2
t

∫

R3N

‖b̂N(r1, . . . , rN )− ûGP (r1, . . . , rN )‖2ρ0Ndr1 . . . drN . (5.10)

64



BEC: A TRANSITION TO CHAOS RESULT

so that we get

H(PN ,PGP )|Ft

=
1

2
t

∫

R3N

N
∑

i=1

‖bNi (r1, . . . , rN )− uGP (ri)‖2ρ0Ndr1 . . . drN

=
1

2
Nt

∫

R3N

‖bN1 (r1, . . . , rN )− uGP (r1)‖2ρ0Ndr1 . . . drN

=
1

2
NEPN

∫ t

0

‖bN1 (Ŷs)− uGP (Y1(s))‖2ds, (5.11)

where the symmetry of b̂N and ρ0N has been exploited.
Finally we get the sum of N identical one-particle relative entropies, each of

them being defined by

H̄(PN ,PGP )|Ft
=:

1

N
H(PN ,PGP )|Ft

=
1

2
EPN

∫ t

0

‖bN1 (Ŷs)− uGP (Y1(s))‖2ds. (5.12)

By the Energy Theorem we can deduce that for any t > 0 the one particle
relative entropy is asymptotically finite but it does not go to zero in the scaling
limit.

On the other hand, the relevant Energy Localization Theorem now says that the
asymptotic finite relative entropy, between the one particle process and the GP
process, is supported only on smaller and smaller balls surrounding each particle
([39]).

In fact, the thesis of the Energy Localization Theorem can be now read

lim
N↑∞

∫

R3(N−1)

dr2 · · · drN
∫

FN (r2,...,rN ))

‖bN1 − uGP ‖2ρ0Ndr1 = 0. (5.13)

Let us finally introduce the following time dependent random subset of R3

DN (t) :=
N
⋃

i=2

BN (Xi(t)) (5.14)

where BN (r) is again the ball with radius N−1/3−δ, 0 < δ ≤ 4/51, centered in
r, and the stopping time

τN := inf{t ≥ 0 : X1(t) ∈ DN(t)} (5.15)

We explore the possibility that, for large N , the one particle process continu-
ously lives outside the interaction-set DN (t) the most part of the time, and that
the τN− stopped version ofX1 converges in some sense to the τN−stopped version
of XGP .

Notice that this conjecture is not obvious. In fact, even in dimension d = 3,
where the Lebesgue measure of DN (t) goes to zero for all t, it could happen that,
asymptotically as N goes to infinity, such a set takes the form of a very complicated
surface, dividing the physical three-dimensional space into smaller and smaller non
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connected regions. On the other hand we are dealing with a random system, so
that it could happen that the probability of such an event is equal to zero.

The following proposition, which affirms that, in the scaling limit, a generic
particle remains outside the interaction-set, for any finite time interval, with prob-
ability one, has been proved in [37]

Proposition 5.1. Let h1), h2) and h3) hold and the ground state Ψ0
N be of class

C1. Then in dimension d = 3, for all t > 0, we have

lim
N→∞

P(τN > t | X1(0) /∈ DN (0)) = 1 (5.16)

and τN has an exponential distribution.

Finally if we consider the stopped one-particle process, for it we can prove its
convergence to the GP process in the relative entropy sense exploiting the Energy
Localization Theorem (see also [37])

Proposition 5.2. Let h1) h2) and h3) hold. Assume also that Ψ0
N is of class C1

and that uGP is bounded. Then, with τN defined as in (5.15), we have

lim
N↑∞

H̄(PN ,PGP ) |F
t∧τN

= 0 (5.17)

Proof. Recalling (5.6) and (5.7) we can write

H̄(PN ,PGP )|F
t∧τN

=
1

2
EPN

∫ t∧τN

0

‖bN1 (Ŷs)− uGP (Y1(s))‖2ds

≤ 1

2

∫ t

0

EPN
{‖bN1 (Ŷs)− uGP (Y1(s))‖2I{Y1 /∈DN

s
}}ds

=
1

2
tEPN

{‖bN1 (Ŷs)− uGP (Y1(s))‖2I{Y1 /∈DN
s
}}

=
1

2
t

∫

R3N

‖bN1 (r1, . . . , rN )− uGP (r1)‖2IFN (r2,...,rN ) (r1)ρ
0
Ndr1 · · · drN . (5.18)

Recalling (5.13), we finally get

lim
N↑∞

H̄(PN ,PGP )|F
t∧τN

=
1

2
t lim
N↑∞

∫

R3(N−1)

dr2 . . . drN

∫

FN (r2,...,rN )

‖bN1 − uGP‖2ρ0Ndr1 · · · drN

= 0. (5.19)

�

6. APPENDIX

The proofs of the Energy and Energy Localization theorems are very similar
and substantially devoted to establish a lower bound for an energy form. In order
to establish the Energy Theorem it is also necessary to derive an upper bound for
E[ρ0N ]. But this is much easier (see [31] pag.52).

66



BEC: A TRANSITION TO CHAOS RESULT

The proof of the lower bound is essentially based on two fundamental results
regarding the following interacting Hamiltonian

HI
N = −

N
∑

i=1

∆i +
∑

1≤i≤j≤N

v(|xi − xj |) (6.1)

for N bosons in a cubic box of side length L, corresponding to the density homo-
geneous case.

The first result is a generalization of a Dyson’s Lemma ([15]) by Lieb and
Yngvason ([32]), which we report in a simplified version:

Lemma 6.1. (Smoothing Lemma) Let v(r) ≥ 0 with finite range R0 and let U(r) ≥
0 be any function satisfying

∫

U(r)r2dr ≤ 1 U(r) = 0 r < R0 (6.2)

Then

E{
N
∑

i=1

[b2i (X̂)]+
∑

1≤i<j≤N

v(Xi(t)−Xj(t))} ≥ E{
N
∑

i=1

ǫb2i (X̂)+a(1−ǫ)U(Si)} (6.3)

where

Si := min
j,j 6=i

|Xi −Xj | (6.4)

denotes the position of the nearest particle to particle i and the integration domain
in (6.3) is any convex subset of R3 containing the zero.

Remark 6.2. a) One can take

U(r) = 3(R3 −R3
0)

−1 R0 < r < R (6.5)

and otherwise equal to zero, where R represents the range of the potential U
substituting the interaction potential v having range R0.

b) The Smoothing Lemma substitutes a very soft and nearest-neighbor potential
for the original pair interacting potential v at the price of sacrificing some part of
the kinetic energy ([31]). This is equivalent to saying that moving towards a low
particles density region, where the strength of the Brownian noise is attenuated
and the single particle feels only its nearest neighbor, can only lower the mean
energy.

The second fundamental result is the following estimate for the density homo-
geneous case due to Lieb and Yngvason ([32])

Theorem 6.3. (Lower bound Theorem LBT) Let (6.1) be the Hamiltonian for N
interacting bosons in a cubic box Λ with side length L, where v is a spherically
symmetric pairs potential having finite scattering length a. Then there exists a λ >
0 such that the ground state energy of HI

N , with Neumann boundary conditions,
satisfies

E0[ρ
0
N ]

N
≥ 4πρa(1− CY 1/17) (6.6)
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where ρ = N
L3 is the fixed particle density and Y = 4πρa3

3 is the number of particles

in the ball of radius a, for all N and L such that Y < λ and L
a > C1y

− 6
17 . Moreover

C and C1 are positive constants independent of N and L.

Proof. (Sketch of the proof of the LBT) (see [31] Theorem 2.4, p.18) Because
of Y < λ the estimate is true in a low particles density regime. The condition on
L
a implies N ≥ C2Y

−1/17. Starting from the right hand side of (6.3), approaching
the operator −ǫ△ + a(1 − ǫ)U by the point of view of first order perturbation
theory and applying the cell-method ( the big box Λ is divided into cubic cells
of side length l that it is kept fixed as L ↑ +∞) the authors of [31] establish the
following lower bound

E0[ρ
0
N ]

N
≥ 4πρa(1− 1

ρl3
)K(4ρl3, l), (6.7)

where

K(4ρl3, l) ≥ (1− ǫ)(1− 2R

l
)3(1 + C1Y (

l

a
)3(

R3 −R3
0)

l3
)−1

× (1 − l3

R3 −R3
0

C2Y

(ǫ(a/l)2 − C3Y 2(l/a)3)
) (6.8)

with Y = 4πρa3

3 . Since there is no convexity of the ground state energy before
having reached the limit, they take advantage of the superadditivity property of
E0 in order to obtain that n = O(ρl3) in all boxes.

With the ansatz

ǫ ∼ Y α, a/l ∼ Y β, (R3 −R3
0)/l

3) ∼ Y γ (6.9)

the following choice

α = 1/17, β = 6/17, γ = 3/17 (6.10)

implies the validity of (6.7).
This choice means in particular that

a≪ R≪ ρ−
1
3 (6.11)

where R is the range of the near neighbors potential U . �

Proof. (Energy Theorem)(see [31], Theorem 6.2) We only prove the convergence
of the energies (3.2). The density convergence follows easily in the usual way by
variation with respect to the external potential and (3.4),(3.5) and (3.6) can be
obtained by (3.2) by variation with respect to the different components of the
energy, as noted in [11].

If ΨN is a general wave function, let us put ρN = |ΨN |2 and

√
ρN =

N
∏

k=1

√

ρGP (rk) · F (r1, r2, ...rN ) (6.12)

Integrating by part and using the GP variational equation (2.16) for φGP , one
can write:

E[ρN ]

N
− E[ρGP ] = 4πNa

∫

ρ2GPdr +
Q(F )

N
(6.13)
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where

Q(F ) = EρN
{

N
∑

i=1

|∇iF

F
|2 + [

1

2

∑

j 6=i

v(|Xi −Xj |)− 8πNaρGP (Xi)]} (6.14)

We note that:
∇iF

F
=

∇i
√
ρN√
ρN

− ∇i
√
ρGP√
ρGP

(6.15)

Minimizing Q(F ) we will show that when N ↑ +∞
Q(F )

N
≥ −4πNa

∫

ρ2GP (r)dr + o(1) (6.16)

implying by (6.13) the convergence of the energies with E[ρN ] = E0[ρ
0
N ].

Following [31] we minimize Q(F ) using the cell-method, taking advantage in
each cell of the estimate given for the homogeneous case by the LBT. Successively
we minimize over all possible distributions of the particles in the different cells.
Since we are looking for a lower bound and the interaction potential v is positive,
we can ignore the interactions among the particles in different cells. Finally we
take the cell dimension going to zero.

Labeling the cell with the index α, one has

inf
F
Q(F ) ≥ inf

nα

∑

α

inf
Fα

Qα(Fα)

where Qα is defined as Q but with the integrations limited to the cell α, Fα is
the function F with particle number nα and the infimum is taken over all possible
distributions of the particles such that

∑

α nα = N .
We now fixe someM > 0 and restrict ourselves to cells inside a cube ΛM of side

length M . In the cells inside ΛM one can evaluate the maximum and minimum
value of ρGP in the cell α, denoted by ρα,max and ρα,min respectively.
For all 1 ≤ i ≤ nα, defining

ρ(i)nα
(r1, ..., rnα

) =

nα
∏

k=1,k 6=i

ρGP (rk)|Fα(r1, ..., rnα
)|2 (6.17)

one has

Eρnα
{|∇iFα

Fα
|2 + 1

2

∑

j 6=i

v(|Xi −Xj|)}

=

∫

[|∇iFα

Fα
|2 + 1

2

∑

j 6=i

v(|ri − rj |)]
nα
∏

k=1

ρGP (rk)|Fα|2dr1 · · · drnα

=

∫

ρGP (ri)[|
∇iFα

Fα
|2 + 1

2

∑

j 6=i

v(|ri − rj |)]ρ(i)nα
dr1 · · · drnα

(6.18)

≥ ρα,minEρ
(i)
nα

{|
∇i

√

ρ
(i)
nα

√

ρ
(i)
nα

|2 + 1

2

∑

j 6=i

v(|Xi −Xj|)}, (6.19)

where the equality ∇i

√

ρ
(i)
nα

=
∏nα

k=1,k 6=i

√

ρGP (rk) · ∇iFα has been used.
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Now applying the Smoothing Lemma to the expectation in (6.19) one has for
all 0 ≤ ǫ < 1 that the right hand side of (6.19) is larger or equal to

ρα,minEρ
(i)
nα

{ǫ|
∇i

√

ρ
(i)
nα

√

ρ
(i)
nα

|2 + a(1− ǫ)U(Si)} (6.20)

Since
√
ρnα

=
√

ρGP (ri) ·
√

ρ
(i)
nα

one can estimate

|∇i
√
ρnα

|2 ≤ 2ρα,max|∇i

√

ρ
(i)
nα

|2 + 2ρ(i)nα
CM (6.21)

with CM = supr∈ΛM
|∇√

ρGP (r)|2 independent of N .
Substituting (6.21) into (6.20), summing over i from 1 to nα and using ρGP (ri) ≤

ρα,max in the expectation we finally get

Qα(Fα) ≥
ρα,min

ρα,max

nα
∑

i=1

Eρnα
{ ǫ
2
|
∇i

√
ρnα√
ρnα

|2 + a(1− ǫ)U(Si)}

− 8πNaρα,maxnα − ǫCMnα. (6.22)

In order to minimize (6.22) with respect to nα we can use the Lower Bound
Theorem on the box α having side length L

E0(nα, L) :=

nα
∑

i=1

Eρ0
nα

{ ǫ
2
|
∇i

√
ρnα√
ρnα

|2 + a(1− ǫ)U(Si)} ≥ nα · 4πanα

L3
(1− CY

1
17
α )

(6.23)

with Yα = a3nα

L3 , provided Yα is small enough, ǫ ≥ Y
1/17
α , nα ≥ C3Y

−1/17
α and

2R
L ∼ Y

1/17
α . The condition on ǫ is verified if we choose ǫ = Y 1/17 with Y = a3N

L3 .
Ignoring for the moment the last term in (6.22), if n̄α denotes the value which
minimizes the right side of (6.22), then one necessarily has

ρα,min

ρα,max
(E(n̄α + 1, L)− E(n̄α, L)) ≥ 8πaNρα,max (6.24)

On the other hand, one can prove ([31],p.55, Lemma 6.4) the following

E(n̄α + 1, L)− E(n̄α, L) ≤ 8πa
nα

L3
(6.25)

Putting together the last two relations one recovers that n̄α is at least ∼ NL3.
If one takes L ∼ N−1/10 then the conditions in order that (6.23) is true are fulfilled
for N large enough, i.e.

n̄α ∼ N ·N−3/10 ∼ N7/10 (6.26)

and

Yα =
a3n̄α

L3
∼ N−3N7/10N3/10 ∼ N−2 (6.27)

where it has been used that a ∼ N−1. Moreover

Y =
a3N

L3
∼ N−7/10
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Assuming that nα is real and dropping the condition
∑

nα = N , one can finally
minimize

4πa(
ρα,min

ρα,max

n2
α

L3
(1 − CY 1/17)− 2Nnαρα,max), (6.28)

finding that the minimum is obtained for

n̄α = N
ρ2α,max

ρα,min

L3

(1− CY 1/17)
(6.29)

Substituting this value of nα in (6.23), collecting the last term in (6.22) and adding
also the contribution of the cells outside ΛM one can finally write

∑

αQ
α(Fα)

N
≥ −4πNa

∑

α⊂ΛM

ρ2α,minL
3
ρ3α,max

ρα,min
3

1

(1− CY 1/17)

− ǫCM − 8πNa sup
r/∈ΛM

ρGP (r). (6.30)

Now

4πNa
∑

α⊂ΛM

ρ2α,minL
3 ≤ 4πNa

∫

|ρGP |2 (6.31)

ρGP being differentiable and strictly positive and all the cells being included in
the fixed cube ΛM , there exist constants C3 <∞ and C4 > 0 such that

ρα,max − ρα,min ≤ C3L, ρα,min ≥ C4 (6.32)

Remembering that we have chosen L ∼ N− 1
10 and, consequently, Y ∼ N− 17

10 , one
has for large N

ρ3α,max

ρ3α,min

1

(1− CY 1/17)
≤ 1 + cost ·N−1/10 (6.33)

Finally we obtain from (6.13)

E(ρN )

N
− E(ρGP ) ≥ 4πNa

∫

|ρGP |2

− 4πNa

∫

|ρGP |2(1 + const ·N−1/10)−N−1/10CM − 8πNa sup
r/∈ΛM

ρGP (r)

(6.34)

Taking N ↑ ∞ and then M ↑ ∞ one obtains the result. In fact the last term
is arbitrarily small for M large since ρGP decreases faster than exponentially at
infinity ([29]). �
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Proof. (Energy Localization Theorem)(see [31] , Lemma 7.3, p.66 or [30] for
a sketch of the proof) It is sufficient to show that when N ↑ ∞

∫

R3(N−1)

dr2 · · · drN
∫

F c

N
(r2,...,rN )

(
∇1F

F
)2ρNdr1

+

∫

R3(N−1)

dr2 · · · drN
∫

ρN [
1

2

∑

k≥2

v(|r− rk|)− 8πNaρGP ]

≥ −4πNa

∫

|ρGP |2dr− o(1). (6.35)

This implies the thesis because (6.35) can be written as

∫

R3(N−1)

dr2 · · · drN
∫

(
∇1F

F
)2ρNdr1

+

∫

R3(N−1)

dr2 · · · drN
∫

ρN [
1

2

∑

k≥2

v(|r− rk|)− 8πNaρGP ]

−
∫

R3(N−1)

dr2 · · · drN
∫

FN (r2,...,rN )

(
∇1F

F
)2ρNdr1

≥ −4πNa

∫

|ρGP |2dr− o(1) (6.36)

and from (3.4),(3.5) and (3.6) in the Energy Theorem with V particularized to
be equal to 8πNaρGP in (3.5) we obtain the thesis. Therefore one has to prove
(6.35).
Using the fact that F is symmetric in the particle coordinates, one can see that
(6.35) is finally equivalent to

Qδ(F )

N
≥ −4πNa

∫

|φGP |4dr− o(1) (6.37)

where

Qδ =
N
∑

i=1

∫

Γc

i

|∇iF |2
N
∏

k=1

ρGP (rk)drk

+
∑

1≤i≤j≤N

∫

v(|ri − rj |)|F |2
N
∏

k=1

ρGP (rk)drk (6.38)

−8πNa

N
∑

i=1

∫

ρGP (ri)|F |2
N
∏

k=1

ρGP (rk)drk (6.39)

with

Γc
i = {(r1, ..., rN ) ∈ R

3N |min
k 6=i

|ri − rk| ≤ R′} (6.40)

where R′ = N− 1
3−δ. Note that Γc

i is now a subset of R3N and not of R3 like FN .
We now observe that Qδ(F ) is essentially the same as Q(F ) in the proof of the

Energy Theorem, the only difference being in the integration domain of the kinetic
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energy term. Applying the same scheme used for minimizing Q(F ), we only need
to add the two following remarks

1) Since from (6.9) L
a ∼ Y −β

α then

R ∼ LY 1/17
α ∼ aY −β

α Y 1/17
α ∼ aY −5/17

α

having used that β = 6
17 . Finally R ∼ N−7/17.

2) Since the kinetic energy of particle i is now restricted to the subset of R3N

in which mink 6=i |ri − rk| ≤ N−1/3−δ, in order to apply correctly the Smooth-

ing Lemma one must impose that R ≤ N−1/3−δ that is N−7/17 < N−1/3−δ i.e.
δ ≤ 4/51. Therefore the part of the kinetic energy we have in Qδ(F ) (according
with the hypothesis in Energy Localization Theorem) is sufficient to establish the
estimate (6.20). The remaining part of the kinetic energy, which is ǫ times the

total kinetic energy, is of order N− 2
17 since ǫ = Y

1
17
α and Yα ∼ N−2. Being the

total kinetic energy asymptotically finite (see (3.4)), this last part goes to zero
when N ↑ ∞.

As in the proof of the Energy Theorem, we finally obtain

Qδ(F )

N
≥ −4πNa

∫

(ρGP )
2[1 + const ·N−1/10]− Y 1/17CM − 8πaN sup

r/∈ΛM

ρGP (r)

(6.41)
Taking N ↑ ∞ and then M ↑ ∞ one obtains the result. �
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