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Abstract: The aim of the present paper isto establish the logarithmic convexity
and some inequalities for the generalized extended beta function and, by using
theseinequalitiesfor the generalized extended beta function, find thelogarithmic
convexity and the monotonicity for the generalized extended confluent hyper
geometric function.

1. PRELIMINARIES
The extended beta function [3] is defined by:

-1
B(x,y: p)= [[@-1) e @Vdt  (R(p)R(),R(y)>0), (L)
Clearly, if p=0,then B(X,Y;0) = B(X,Y), the classical beta function [11].

The generalized extended beta function BS<(x, y) defined by (see [10])

. 1x1 1 . P
BE<) (x,y) = jot A-t)"* F (& ¢ - Ta_t )dt) | (1.2)

(R(p) = O;min[R(x), R(y), R(&), R(&)]> OR(n) > 0).
The classical Beta function B(X, Y) is defined by
B(x, y) = I;tx’l(l— 0" dt  (R(x)>0,R(y) > 0) (13)

Itisclear that thereisfollowing reationship between the classical Betafunction

B(X,y) and its extensions:

B(x, y) = B,(x, y) = B“ < (x, y) = B P (x, y)
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The extended confluent hyper geometric function [4], is defined as:

> B(C+n,y-¢0p) 2"
(Dp(g“,y;z):ZO: (CB(C:’;/_;V)D)W’

Where R(p) >0 and £,y € C with y #0,-1,-2,......

An integral representation of ¢, (¢,7;2) asgivenin[4, Eq. (3.7)] by

1 1,2 1 p
= [ty lexp(zt - dt
BC.,-0) jo (a-t) p( t(1_t)) (1.4)

p>0,R(y) > R(<) > 0.

®.(.r7)=

Another generalized form of the extended confluent hyper geometric function
%< (X, y;t) is defined by:

[era-t > texp(a), Fy(é, 4,—ﬁ)dt

(1.5)

1
T . =
DI (X, y;t) B(x,y—x)

(R(p) > 0;min[R(x), R(Y), R(&), R($)]>0.
In the present paper, we present some inequalities for generalized extended

beta functions B ™ (X, y) defined in (1.4). Also, we find the monotonicity and
the logarithmic convexity for functions related to extended confluent hyper

geometric functions @5 (X, y;t) defined in (1.5).

2. DEFINITIONSAND LEMMAS
Now we recall definitions of some convex functions and recite several lemmas.

Definition 1: ([2,6]). Let X be a convex set in real vector space and let
g: X = R beafunction. Thefunction g issaidto be convex on X if theinequality

9(e% + (1= 8)%) <ag(x) +(1-£)g(x,)
Isvalidfor any x,%X, € X and &£ €[0,1].

A function g is said to be concave if —g is convex.
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A functiond is said to be logarithmically convex (or logarithmically concave
respectivey) on X if g >0andIng (or -Ing respectively) in convex (or concave
respectively) on X.

STUDY ON COVEXITY AND INEQUALITIES
Lemma 1 (Chebychev's integral inequality [7, 9, 5, 8]. Let f,g,h: 1 cR—> R
be mapping such that h(x) > 0, h(x) f (X)g(x),h(x) f (x), andh(x)g(x) are

integrableon 1. if f(x)andg(X) are synchronous (or asynchronous respectively)
onl, that is,

[f(¥) - T(WI[9(x)-a(y]=0

Foral x,yel,then
j h(x)dxj h(xX) f (X)g(x)dx= j h(x) f (x)dxj h(x)g(X). 2.1)

Lemma 2: (Holder’s inequality [12,14]). Let 6, and 0, be positive numbers

1 1

such that ;+9_:1and let f,g:[a,b] > R beintegrable functions. Then
1 2

b

j f (x)g(x)dx

a

1
dx)%.

) (o)

S(ﬂf(x) -

Lemma3: ([1]). Let f () =2_8X" and 9(¥) =D 0.X" with a R and
n=0 n=0

b

n

b, >0 for al n, converge on (—&,&) . If sequence { } is increasing (or
n=0

f(
decreasing respectively), then XH% is also increasing (or decreasing

respectively) on (0,¢&).
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3. INEQUALITIESFOR GENRALISED EXTENDED
BETA FUNCTIONS

Now we establish inequalities for functions involving generalized extended beta
function (1.4).

Theorem 1: if X,Y, X, Y, are positive number such that (X—x)(y—Y,) >0,
then

B0 YBY 7 06, V) < BT 0L VBT () 3D

Proof. Consider the mapping f,g,h:[0,1] —[0,] given by

fE)=t,g(t)=@-t)"™
And
_tx-1  +\ni-1 . P
h(t) = t* *(1-t)*", R (&, ¢, —t”(l—t)”)
Since
f(t) = (x—x )" and g'(t) = (y, - y)@-t)"

By virtue of Lemma 1, we observe that the mapping f and g are synchronous
(asynchronous) On [0,1] and h is non-negative [0,1]. Thus, using Chebychev’'s
integral inequality for the function f, g and h, we arrive at

T )L R (E, C - —P ) dt
[ a-0" R i) o
! X=X _ y-V14X-1eq y-1 _ p
[ (L)L) LR AL
1 -1l x=% (1 +\%-1 _ P _
[ @0y REg, t’7(1—t)’7)dt
< 1 X -1 y; -1 Y-y, p
xjo(t L-t)"t1-t) 1Fl(§,§,——t,7(1_t)q)dt (xe(0,2)

Which implies
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J.Ol(txll(l—t)yl11&(&5#@)&
XJ‘:(txl(l—t)y11F1(§,é/,—ﬁj dt
< J.:txfl(l_ t)ylfll Fl(é:,é/,_ﬁjdt (33)

xJ'Ol(txrl(1— t)Y F{g,;,-ﬁ] dt (xe(0,1)

Further using (1.4) , we easily arrive at the result (3.1)

Corollary 1. For X,x >0, we have

Bf'g””(x, X1) > \/Bé@é’ﬂ)(x’ X) B'(Jféﬂ)(xl’ Xl) (3.4

Proof. This follows immediately form settingy = X andy, = X, in Theorem 1
directly.

Forzn =1 in Theorem (1) corollary (3.4), we have

Corollary 2. 1f X, y, X, ¥, arepositivenumberssuchthat (X—x)(y—-Y,) =0,
then

Bo< (% Y)Bo* (%, Y) < B3 (3, Y1) By (X, Y). (3.5)

Corollary 3. For X,x >0, we have

£¢ s s ’ (36)
B3 (x,%) = /B5* (x, ) B5* (%, %)

STUDY ON CONVEXITY AND INEQUALITIES

Theorem 2. The function (X,y)> B;<”(X,y) is logarithmically convex on

(0,00) x(0,%0) for al p>0 and 2 > 0. Consequently,
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2
+ X +
[Béfvgvﬂ)()(l > 2 Y1 23’2)} < Bé{@ﬂ)(xl’ yl) Bf’g'”)(xz, Y2) (3.7)

Proof. Let (X, V), (X,,Y,) € (0,0)*and let ¢,d >0 with ¢+ d =1. Then

B (c(x, Yy) +d(X,, ¥,)) = BE 7 (cx +dx,, ¢y, +dy,)

By definitions, we have

& _ 1 Cxq+0%— 1+0yo— p
By (006, %) + A0, ¥o)) = [ ()M AR (6 me

c+d
1 o +dx,—(c+ +dy,—(c+
:J‘Ot Q0% —( d)(l_t)Wl dy,—(c+d) |:1Fl(é:’é/,_ p ):| dt

t7(1-t)"

I:tc(xl—ntdxz—l(l_ t)c(yl—l) 1- t)" (v,
= c d
x{lﬁ(é,;,— v (1‘;),,)} {15(5,4,— v (l‘it),,)} dt

1 -1 y -1 _ p i X1y y,—1 _ p i
j{t*l A-" RS, t,,(l_t),,)} {t PR, t,,(l_t),,)} o

1 1
Setting&, = < and@, = q and using the Holder inequality (2.2 give)

(& m) Loalpg pyn-t . i
B¢ (C(Xl,y1)+d(xz,yz))£{jotxl 1-9"" 1RS¢, t,,(1_t),,)dt}

d
{ [le R e e - - (1':),7 )dt}

=[BE (%, y) [ [BE“ (%, y,) ] -

Accordingly, the function B <™ (x, y) is logarithmically convex on (0,0)?.
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1
When C=d = 2+ the above inequality reduce to (3.7).

Remark 1: Letting X,y > Osuch that min__, (x+a,x—a) > 0and taking
X =X+a, X, =X-a, y,=y+b,y,=y-bin(3.7) resultin
[Bf’g””(x, y)}2 <BE<(x+a,y+b)Bf <" (x—a,y—b)
For all R(p)>0 and min{R(X),R(y),R(£),R(),R(7)} > 0.

4. INEQUALITIESFOR EXTENDED CONFLUENT
HYPERGEOMETRIC FUNCTIONS

Now wefind thelogarithmic convexity and the monotonicity related to the extended
confluent hyper geometric function @< (X, y;t) defined in (1.5).

Theorem 3: Letx >0 andy,z>0.

D7 (X, y;t)
(1) For y>z, thefunctiont Hm isincreasing on (0,) .

(2) For y=>z,

Z(Di'f'”(x-i'l, y+1;t)(D‘ivC,ﬂ(X’ Z,t) > yq)e;vaﬂ (X, y;t)(Dé;'C'ﬂ(X"rl, Z+1;t). (4 1)
(3) The function t > @< (X, y;t) is logarithmically convex on [ .
(4) For o,y,t>0, the function

B(X, y)P3<" (X +0,Y;t)
B(X+0, y)®7" (X, y;t)

Is decreasing on (0,) .

Proof. By the definition in (1.5), we have

D (X, yit) _ > a o
DT (%zt) > a (d)t”
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Where

B:<”(x+n,z—X)
B:<"(x,z—X)

8,(2) =

¢ &0
If denoting 'n = an(d)’ then

— an(c) _ an+l(C)
a,(d) a,,(d)

n~ 'na

CB(x,z-X)| By (x+n,y-X) Bi7(x+n+Ly-X)
B(x,y—X)| B*"(x+n,z-x) B;"(x+n+1z-X)

By taking p=X+N,d=Z—Xy =x+n+1,andS=Yy—X and using (3.1),
since (p—r)(q—S)=y—-2z2>0, it follows from Theorem 1 that

B:”(x+n,y—X) - B:<”(x+n+1y—Xx)
B¢ (x+n,z—x)  B;¢"(x+n+1z-x)

Which is equivalent to say that {f,}  isan increasing sequence. Hence,

t @igﬂ (X, y;t)
with the aid of Lemma 3, we conclude that q)i,m (%, y:1) IS increasing on

(0,0).
Also from [13] that
d" X
S @ x yin = %@‘gfﬂ(m n,y+nt) @2

. D7 (X, y;t)
- - - H . .
Since the increasing property of —q)i,;,q (X, y:1) is equivalent to

>0

d D27 (X, y;t)
dx| @7 (x, z 1)



STUDY ON CONVEXITY AND INEQUALITIES ASSOCIATED WITH GENERALIZED... 239

Together with (4.2), we further obtain

£, \HES : £, HYDEE :
D7 (X, Y1) D7 (X, Z, 1) = DL (X, Y )DL (X, Z3t)

= gq)i@'”(xjtl y+Lt)Dd3 (X, z;t) —gd)ff*”(x, Y@ 7 (x+1,z+11) >0
This implies the inequality (4.1).

The logarithmic convexity of t > %< (X, y;t) can be proved by using the
integral representation (1.5) and by applying the Holder inequality (2.2) asfollows:

D57 (x, y;al + (1-a)m)

- explalt + (- @M, (6 ¢t

T B(x y-x) 0 t7 (1-t)’
_ 1 1 X1rq  4\y-x1 _ p )
By X jo(t (L-t)" P exp(it), R(¢.¢, —t,,(l_t),,)j

=&
X(txl(l_t)yxl exp(mt)lFl(éié/'_ﬁ)] ot

1 Lxa y-x-1 P a

l 1><—1 y-x-1 _ p B
{mjot (1-t)* " exp(mt), F (£, t,,(1_0,,)0@

=[ @577 (x, ;] )T (@557 (%, ; m)}H1
Forl,m>0 and £ €[0,]].

For the case 1<0, the assertion follows immediately from the identity
DI (X, y;1) = €D (y—x, y; )
In[13]

Letyx > x and
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h(t) _ 1:x‘—l(:l__ t)y*x'fl eXp(It)l Fl [fa g, _ﬁJ

10 =[ﬁj 0 =[ﬁj

Using the integral representation (1.5), we have

B(x, V)05 (x+a, ;1) B(X, )@ (X' + o, y;1)
B(X+ o, I )(Df){ﬂ (X’ y’ I) B B(X'+ o, y)q)f)vaﬂ (XI1 y; I)

(4.3

jol JOECLGE Jjg(t)h(t)dt
[ f hat [ net)at

When & > (0 and the function f is decreasing and the function g is increasing.

Since h is a non-negative function for t €[0,1] , by Chebyshev's inequality (1), it
follows that

[ fhmat[ ghcdt < [ hoat [ £ B gh()at
Combining this with (4.3) yidds

B(x, V)P, (x+0.¥il) B, VP (X+o,il)
BOx+ oD@, (i) BlX+o, YO (X, i)

Which is equivalent to say that the function

B(X, y)®5<"(x+0,y;l)
B(x+0, y)®," (X, y:1)

Is decreasing on (0,) . The proof of the Theorem 3 is complete.
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