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1. INTRODUCTION 
The rapiddevelopments of commercial image editing tools and software such as GNU Image 
Manipulation Program (GIMP), Adobe Photoshop, haveextremely increased the amount of tampered 
images, which is circulating on social sites. Image tampering or image forgery has thus become a matter 
of concern because “Seeing is not believing” [32]. Tampering of images may be due to splicing, where a 
part of image does not belong to the original image, however,it has been taken from other images. Image 
forgery may be due to other reasons also, such as the darkening or lighting inconsistency [28] of skin 
tone, etc. Conventionally, image tampering detection was done by human inspection. Moreover, images 
may be digitally altered in many ways where the changes cannot be detected by the human eyes, thus the 
investigation of the image being tampered cannot be detected by human inspection. Therefore, there is a 
need for fast and robust-automated algorithms for the image tampering detection. Digital tampering 
detection is highly useful for business, newspapers, criminal forensics and finance to analyze forgery 
efficiently and accurately[29, 36]. 
Splicing technique combines image parts from the intra or inter images without further post-processing 
operation such as smoothing of boundaries among different parts of image. Let I(X, Y) and T(X, Y) are 
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two images and t(x, y) is a part of T(X, Y) which is inserting into I(X, Y). Then, the generated spliced 
image S(X, Y) will be: 
 
S(X, Y) = t(x, y) +I(x, y)           (1)   
Image forensic techniques fall in two categories:Active and Passive. Active forensic technique use pre-
embedding information such as Digital Watermark[24,25] or Digital Signature, however passive forensic 
technique utilize intrinsic[23] information of image. In passive forensic technique, we can know the 
source of image but in passive and blind forensic technique [20], we do not know the source or origin of 
images.  
Sensor noise introduced in the image during image acquisition process [21].Sensor noise features play 
important role in passive and blind image splicing detection. The various image denoising techniques 
were studied in the given paper with references[1,2,3,4,5,6,7,8,34]. 
 

 
 

Fig.1.Example of spliced images 
 
Image source and camera model identification using noisefeatures were presented by authors in their 
papers[10,11,12,13,14,15,16]. Image splicing detection using noise feature were discussed 
inreferences[17, 18, 19, 22, 26, 30,31,35,39,40]. Authors [1, 27,33]have presented various passive forensic 
techniques for images in respective survey paper. 
In this paper, we are discussing passive-blind splicing detection method using Discrete Wavelet 
Transform (DWT) and different thresholding techniques and these techniques are providing commendable 
performance. 
The contents of the proposed paper aredivided infour sections. In section II, we propose our method for 
image splicing detection. In section III, we provide the experimental results and discussion. In the 
last,section IV provides the conclusion and future works of image splicing detection. 

2. THE PROPOSED METHOD 
The proposed method is based on the variations of noise features for an image in the authentic and forged 
regions. Noise residue in different places of the authentic image regions will tend to be more similar while 
the noise residue between authentic and spliced regions is more likely to be different or distinct. These 
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noise inconsistencies provides clue for image splicing detection and localization of spliced region. The 
proposed algorithm and pseudo code are as follow: 

 

 
Fig.2Proposed method flow chart for splicing detection  

2.1Algorithm 
 

1. Take input image and convert to grayscale in order to obtain a single color channel matrix from 
the three-color channel matrix. 
2. The image is then filtered, i.e., denoised by using DWT(Discrete Wavelet Transform). 
Denoising an image using DWT involves the following steps: 

o Apply wavelet transform to the input image. In this case, the Haar Wavelet Transform is 
used which divides an image of size 𝑛𝑛 × 𝑛𝑛 into four component images of size 𝑛𝑛/2 × 𝑛𝑛/2. 
 
 
 
 
 
 

 
 
 

 
 
A (Approximation area):It contains global information of an image. 
 
H (Horizontal area):It contains information of vertical lines hidden in the image. 
 
V (Vertical area):It contains information of horizontal lines hidden in image. 
 
D (Diagonal area):It contains information of diagonal details hidden in an image. 
These are calculated for each pixel (𝑖𝑖, 𝑗𝑗) of the image as follows: 

𝐴𝐴 =
1
2

[𝑀𝑀(2𝑖𝑖, 2𝑗𝑗) + 𝑀𝑀(2𝑖𝑖, 2𝑗𝑗 + 1) + 𝑀𝑀(2𝑖𝑖 + 1,2𝑗𝑗) + 𝑀𝑀(2𝑖𝑖 + 1,2𝑗𝑗 + 1)] 
 

A H 

D V 
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𝐻𝐻 =
1
2

[𝑀𝑀(2𝑖𝑖, 2𝑗𝑗) − 𝑀𝑀(2𝑖𝑖, 2𝑗𝑗 + 1) + 𝑀𝑀(2𝑖𝑖 + 1,2𝑗𝑗) − 𝑀𝑀(2𝑖𝑖 + 1,2𝑗𝑗 + 1)] 
 

𝑉𝑉 =
1
2

[𝑀𝑀(2𝑖𝑖, 2𝑗𝑗) + 𝑀𝑀(2𝑖𝑖, 2𝑗𝑗 + 1) −𝑀𝑀(2𝑖𝑖 + 1,2𝑗𝑗) − 𝑀𝑀(2𝑖𝑖 + 1,2𝑗𝑗 + 1)] 
 

𝐷𝐷 =
1
2

[𝑀𝑀(2𝑖𝑖, 2𝑗𝑗) − 𝑀𝑀(2𝑖𝑖, 2𝑗𝑗 + 1) − 𝑀𝑀(2𝑖𝑖 + 1,2𝑗𝑗) + 𝑀𝑀(2𝑖𝑖 + 1,2𝑗𝑗 + 1)] 
 

Use an appropriate threshold to remove noise. Thresholding used can be of two types: 

 
 Hard thresholding  

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎℎ𝑎𝑎𝑎𝑎𝑎𝑎 [𝑀𝑀(𝑖𝑖, 𝑗𝑗)] = �𝑀𝑀
(𝑖𝑖, 𝑗𝑗)       ,    |𝑀𝑀(𝑖𝑖, 𝑗𝑗)| > 𝑇𝑇 

   0             ,     |𝑀𝑀(𝑖𝑖, 𝑗𝑗)| ≤ 𝑇𝑇
� 

 
 Soft thresholding 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 [𝑀𝑀(𝑖𝑖, 𝑗𝑗)] = �𝑠𝑠𝑠𝑠𝑠𝑠
[𝑀𝑀(𝑖𝑖, 𝑗𝑗)]{𝑀𝑀(𝑖𝑖, 𝑗𝑗) − 𝑇𝑇}       ,   |𝑀𝑀(𝑖𝑖, 𝑗𝑗)| > 𝑇𝑇 

   0                                                 ,     |𝑀𝑀(𝑖𝑖, 𝑗𝑗)| ≤ 𝑇𝑇
� 

 
 

Soft thresholding provides more sophisticated results in comparison to hard, therefore it is 
preferred[37,38].Inverse wavelet transforms of the wavelet coefficients provides the denoised image. 
Inverse Haar Wavelet Transform can be calculated as follows: 

𝑀𝑀(2𝑖𝑖, 2𝑗𝑗) =
1
2

[𝐴𝐴 + 𝐻𝐻 + 𝑉𝑉 + 𝐷𝐷] 

𝑀𝑀(2𝑖𝑖, 2𝑗𝑗 + 1) =
1
2

[𝐴𝐴 − 𝐻𝐻 + 𝑉𝑉 − 𝐷𝐷] 

𝑀𝑀(2𝑖𝑖 + 1,2𝑗𝑗) =
1
2

[𝐴𝐴 + 𝐻𝐻 − 𝑉𝑉 − 𝐷𝐷] 

𝑀𝑀(2𝑖𝑖 + 1,2𝑗𝑗 + 1) =
1
2

[𝐴𝐴 − 𝐻𝐻 − 𝑉𝑉 + 𝐷𝐷] 
 

3. Get the noise residue features by subtracting denoised image from original one. 
4. The noise residuefeatures of images aredivided into blocks of 8 × 8 pixels and correlation is 
calculated amongst adjacent blocks of the image and stored in a correlation matrix. The correlation 
between two quantities 𝑥𝑥 and 𝑦𝑦 is calculated as follows: 
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑦𝑦) =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑦𝑦)

𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
=
𝐸𝐸[�𝑥𝑥 − 𝐸𝐸(𝑥𝑥)��𝑦𝑦 − 𝐸𝐸(𝑦𝑦)�]

𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
 

 
 
Where𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒   and 𝐸𝐸(𝑒𝑒𝑒𝑒𝑒𝑒) denotes variance and mean respectively. 
 
5. Finally,the Gaussian Mixture Density(GMD)based Bayesian classifier, classify   the values of the 
correlation matrix and threshold of Bayesian classifier is set by Expectation Maximization algorithm [41]. 
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6. The forged or spliced blocks are separately marked out in the output result. 
 
 

2.2 Pseudo-code 
 

Input image: img 
 

detect_splicing( img) 
{ 

 convertToGrayscale(img); 
 

 haarWaveletTransform(img,haar_img); 
 Threshold(haar_img,soft threshold); 

 inverseHaarWaveletTransform(haar_img,denoise_img); 
 

 noise_residue=img-denoise_img; 
 

 calcCorrelationMatrix(noise_residue); 
 

 classify(corr_mat, EM_algorithm threshold); 
 

 return output_img; 
} 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 
 

In this segment, we provide experimental results for the proposed method and demonstrate its 
performances.  A dataset of 250 images is taken for the evaluation and analysis of the results. In the 
dataset images: 125 images are selected as first images and 125 images are selected as second one. The 
details of image resolution varies  in the range 500 x 437 to1152 x 768 pixels but it is not fixed it may 
vary because we are considering  any internet image. Table I provide the details of a few experimental 
images. The size of the spliced parts varies in the range 10-50% for the given images. According to 
requirements, the spliced parts of the images can be any shape such as rectangular, triangle, or other 
shape. Implementation of proposed method is performed using Open CV tools 2014. 
 
The performance metrics of the method is measured in terms of True Positive Rate (TPR), False Positive 
Rate (FPR), and Accuracy. 
 
TPR =Images detected as spliced being spliced / Total number of spliced images          (1) 
 
FPR =Images detected as spliced being original / Total number of original images         (2) 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =       
𝑁𝑁𝑡𝑡𝑡𝑡 + 𝑁𝑁𝑡𝑡𝑡𝑡

𝑁𝑁𝑡𝑡𝑡𝑡 + 𝑁𝑁𝑡𝑡𝑡𝑡 + 𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑓𝑓𝑓𝑓
                                                                                                     (3) 

 
 
Where, 𝑁𝑁𝑡𝑡𝑡𝑡 is the percentage of the spliced region detected as spliced; 𝑁𝑁𝑡𝑡𝑡𝑡 is the percentage of the 

authentic region detected as authentic; 𝑁𝑁𝑓𝑓𝑓𝑓  is the percentage of the spliced region detected as authentic; 
𝑁𝑁𝑓𝑓𝑓𝑓 is the percentage of the authentic region detected as spliced.  

The proposed method provides commendable performance using soft thresholding and Bayes 
shrinkage[38], which is shown in Table. II. We find very good result TPR95-98.5%, FPR 1-5% and 
accuracy 90-95%with theexperimental images, which have smooth and similar textured background. 
However, it does not provide good performance with different texture backgrounds. The gray scale 
images and noise residue features using soft thresholding are shown below in Fig.4A. Visual 
demonstration of experimental results is shown below in Fig.4B. The proposed method detects both single 
Fig. 4B (a, b, c) and multiple spliced regions Fig.4B.(d).Soft thresholding technique provides best results 
in comparison to hard thresholding and wiener filter Table II. The main advantages of proposed method 
is: It is fully automated means there is no manual interruption and it can detect image splicing of Internet 
images which sources is passive and blind. The execution time for image splicing detection in the four 
images (a, b, c, and d) with respect to their size is given in Table III. From Table III, we observe that 
execution time does not depend only to the size of image however, it also depend on the number of 
spliced region in the given image.Proposed method detects single and multi-region splicing with 
commendable speed and there is no substantial difference in execution time.When we compare the 
proposed method execution time with existing method then we get admirable performance that is shown 
in fig.3. Adaptive thresholding such as Bayes shrinkage provide better noise residue features and help to 
get more desirable result for splicing detection. To get the better result where compositions of spliced 
image have different textures, objects, and poor quality, we have requirement of huge number of spliced 
image for training to the GMD based Bayesian classifier. In this case, Adaptive thresholding perform 
exceptionally well and provide good result. The limitations of proposed method lie under the size, quality, 
classifier and noise extraction techniques of the image. 

 
Table I. Details of a few spliced imagedataset 

 
Image File 

Type 
Dimension Resolution(dpi) BitDepth Compression 

a TIF 500*437 96 32 LZW 
b TIF 757*568 72 32 LZW 
c TIF 1152*768 72 32 LZW 
d TIF 569*437 96 32 LZW 

 
Table II. Performance of image splicing detection 

 
S. No Technique TPR FPR Accuracy 

1. Hard Thresholding 75-85% 10-15% 70-82% 

2. Wiener Filter 85-95% 5-10% 80-90% 
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Table III. Proposed method execution time 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.3. Execution time comparison for different methods 
 

3. Soft Thresholding with 
Bayes Shrinkage 

95-
98.5% 

1-5% 90-95% 

Images Size(KB) Execution Times (Second) 
a 52.5 8.66 
b 572 11.67 
c 970 15.262 
d 200 13.48 
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     (A)                                                                             (B) 

Fig.4. (A) Gray images (Left) and noise residue features (Right) using Soft thresholding (B)Results of splicing detection (Left 
column show input composite images and right column show detected part of spliced images) 

CONCLUSION 
 

In this work, authors have demonstrated splicing detection method based on noise features and different 
thresholding techniques.Based on the results we have seen, Soft thresholding with Bayes shrinkage is 
providing a better result in comparison to Hard thresholding and Wiener filter. Proposed method is very 
fast in comparison to existing method because we are using fully automated technique for image splicing 
detection. In future, we want to detect splicing in human body and face, which we see on social sites such 
as Facebook or YouTube. Finally yet importantly, we want to detect real time splicing in the image using 
different image features. 
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