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A GENERALIZATION OF TOTALLY
POSITIVE FUNCTIONS
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Abstract: A real valued function defined on a closed bounded interval is said to be
generalized totally positiveif all of its generalized Lagrange inter polants are positive.
Inthis paper, we show that areal valued function whichis generalizedtotally positive
isinfinitely differentiable.
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1. INTRODUCTION

In [2] T. Popoviciu introduced generalized divided differences based on any
complete Tchebycheff system. Interpolation of functions in an extended complete
Tchebycheff Space (ECT space) can be done by using generalized divided
differences. If f is any function defined on a closed interval [a, b], then an
explicit expression for the generalized polynomial interpolating to f at given points
can be derived in a way similar to the Newton form for Lagrange interpolating
polynomials.

Alan. L. Horwitz and Lee. A. Rubd in[1] introduced totally positive functions
on [-1,1]. We generalize totally positive functions by using generalized Lagrange
interpolants.

Definitions and results from theory of Tchebycheff spaces and generalized
divided differences are discussed in the next section. In section 3, we introduce
generalized totally positive funcions and prove our main result there. Throughout
this paper, we denote the closed bounded interval [a, b] by I.

2. PRELIMINARIES

We refer to chapters 2 and 9 of [3] for the definitions and results in this section.
The results given in this section are those needed to prove our main theoremin the
next section.
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Extended completeTchebycheff spaces.
Definition 2.1. Letu,, u,, .. ., u_ bereal vaued functions defined on | = [a, b] and

1 72
let x, < x,< -+ < X be points in 1. The collocation matrix associated with

M 1" 1Xm ll
{u}"and{x}," is denoted by kul U J and is defined by

(% X1 X ) g "
Mkul,_” u mJ—[D U (%) i

whered =max {j : x = xi_j}, i=1, 2, m providedthe dith derivative of U exists at
thepointsx,i,j=1,2,--, m

Remark 1. In the above definition, if the points x;, x,, -+, X _are al distinct, then
the collocationmatrix becomes

UNCDRIEE u, . (x)u, (x)
M(xl a "xm—l ’xm\ — ul ('XZ) e um—l(x2)um ('XZ)
Lul’“"um—l’um
ul (‘xm) e um—l ('xm)um (xm)
Xm0 Xm\ .
The Determinant associated with the matrix M( ) is denoted
Ug, y Up—1, Uy

X1 Xm—1 xm)
Uy, Ump—1, Uy /”

byD(

Definition 2.2. Let U, ={u};" be any collection of functions in C™* (I). U_ is
called an extended Tchebycheff system (ET-system) on | if the determinants

1 Xm—1,%Xm

Uy, um—l:um) is positive for all x <

associated with the collocation matrix M (
X< <X inl.

Definition 2.3. Let {u,, u,, -
If for eachk, {u,, u,, ..., u} formsan ET-systemon, then{u,, u
extended complete Tchebycheff system (ECT-system) on .

--} be any finite or infinite sequence of functionsin I.
-} iscalled an

1 Vo1
Remark 2. The determinant of the collocation matrix arising from an ECT-system
»={u, u, - u } isdenoted by Dy (X, X,, =+, X ). That is,

X1 Xm-1%Xm
DUm(xlier""xm) =D (u1:”':um—1:um)
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Definition 2.4. A subspace of C(1), finite or infinite dimensional, is called an
Extended complete Tchebycheff space (ECT-space) if it has an ordered basis which
isan ECT-system.

Elements of an ECT-space are called generalized polynomials.

The following theorem gives an estimate for the derivatives of generalized
polynomials.

Theorem 2.1. (cf.[3], p. 370) (Markov inequality) Let I/ bean ECT-space on
I. Then there exists a constant ¢ (depending only on ¢/ ) such that for each
ueld andj=12 - m-1,
IDull,<c, b= |lull,
where h is the length of I.
Definition 2.5. Let U _={u,, u,, --- u_} be an ECT-systemon |, and let f be a

sufficiently differentiable function defined on I. Associated with the points x, < X,
< - <X inl wedefineafunction on | as follows:

[ ugdl)(xl) u,g‘fl) (%) f(dl)(x1)
X1, X1 X 3 X . u(di)(X') u(di)(x.) f(di)(x.)
D (o g ) = dec| Bt ) ST
dm dm
ui )(xm) qun )(xm) f(dm)(xm)
| u,(x) Uy, () f(x) |

whered =max {j : X = xi_j}, i=1,2 -, m

Remark 3.1fU_ ={u,,u,, - u_,u_.}isan ECT-systemon| =[a, b], then the
function in Definition 2.5 with f replaced by u_,, is denoted by

Dy, (%, %001 %00 X).

Remark 4. A well-known example of an infinite ECT-system on any interval
I =[a blisV={1,x %2 -}.Inthiscase Vforms an ordered basis for P, the space
of polynomialson . For eachn,V ={1, x, X, ---, X'} isan ECT-systemforming a
basis for P, the space of all polynomials of degree atmost n— 1.

Remark 5. (cf.[3], p.30) For the ECT-system V. = {1, x, X%, ---, X'} on |, the
determinant Dy, (X, X,, -+, X ) is the well-known Vandermonde determinant. When
X, X, -+, X aredistinct pointsin I, this determinant has the following value.

1

n
DVn(xerZr"'rxn) = H(xi _x])
i,j=1
i>j
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The following theorem establishes the connection between the determinants
Dy, (X, X, =+, X ) @and Du_ (X, X,, -+, X ), where U _is any ECT-systemon I.

Theorem 2.2 (cf [3], p. 367) Let U, be any ECT-systemon | = [a, b]. There
exists constants ¢, and ¢, such that for all choices of points x, < x,< - <x in|

Cl,nDVn (xll Xoy e rxn) =< DUn(x1/x21 :xn) < CZ,nDVn (xlr Xoyter ,Xn)
and for any xin l,

Cl,n|DVn(x1;x2,"',xn—l;x)| = |DUn(x1,le"',Xn—1;x)| = Cz,n|DVn(x1;Xz."';xn—lFx)|

where
n
DVn(xerZr"'rxn) = H(xi _x])
ij=1
i>j
andfor al x e I,
n—-1 n-1
Dy, Gyt i) = 4 [ [ =) {]_[(x —xi)}.
i,j:l i=1
i>j

Generalized Divided Differences

Definition 2.6: Suppose U_= {u,, u,, - u } is an ECT-system in |. Given any
function f defined on I, its (m — 1)th order divided difference with respect to U _ at
mdistinct points X, X,, -+, X_in | is defined as

(xl' “Xm-1s xm)

_ ulr“'rum—l'f
[Xl,xz’...,xm]Umf_ (xlr"'rxm—lrxm)

U,y Ump—1, Um
Remark 6. For theECT-systemV ={1, x, %3, ---, x*'} on| = [a, b, [x, X,, -,
X ]v, f is the classical divided difference.
For the classical divided difference, we have the following result.

Theorem 2.3 (cf.[3], p. 47) If fisinC™ [a,b] andifa<x <Xx,<--<x <bare
n points, then

()

D% %, f =
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for someg, x, <& <X.

In this paper, we further make use of the following property of classical
divided difference which can be obtained from the results in section 8 in chapter 2
of [3].

Theorem 2.4. Let n> 1. Let f be a bounded function defined in [a, b]. If there
exists constants M, such that for all a<x, <x,<- <X <b,

| [Xl’ XZ’ T Xn]vn f | £ Mn’
then f belongsto C™2 [a, b].

Asan application of generalized divided differences, interpolation by functions
in an ECT-space can be done. That is, if ¢/_is an ECT-spaceon | = [a, b] and if
X <X, <-- <X areprescribed pointsin I, then for any given function f defined on
I, there corresponds a unique generalized polynomial in 2/ which interpolates to f
at the points x; < X, < -+ < x_(cf.[3]). An explicit expression for this unique
generalized polynomial p, in i/ and also an expression for the error f —p, can be
derived.

Theorem 2.5 (cf.[3]. p. 370) Let 1/ bean ECT-spaceon| = [a, b] and let x,
X, -, X be distinct points in I. Let f be any function defined on I, which is
sufficiently differentiable.

(i) Then an explicit expression for the unique generalized polynomial p_in U
satisfying the condition

pm (X|) = f(X|)’ I = 1121 =, M
is given by
() = il f- Doy () + [y sl f. 2202 2
Pm 1lu J-Pu, v X2lu,J - Dul(x1)
Dy (xq, %3, Xp—1; X)
+ [xq4, x5, 0, X0y . m
B %2 lonf Dy,,_, (X1, =, Xm—2,Xm—1)

whereU_={u, u, -, u } isan ECT-system forming a basisfor ¢/ and U, =
{u,u, -, ul, k=12 -,m

(iii) The error is given by

DUm.,_l(xl' T Xms X)
DUm(xll "':xm)

f(x) = pm(x) = [x1'x2""'xmix]um+1f-

whereU . ={u,u,, - u_,u_.}isan ECT-systemon| containing U_.
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3. GENERALIZED TOTALLY POSITIVE FUNCTIONS

Throughout this section, ¢/ is an infinite dimensional ECT-spaceon | = [a, b] with
anordered basisU ={u,, u,, ---} whichisan ECT-systemon|. For eachm, ¢/ isthe
ECT- space spanned by U_={u,, u,, ---, u_}.

For a function f defined on I, we denote by L(x, X,, -, X ; f), the unique
generalized polynomial in/_ interpolating to f at mdigtinct points x;, X,, -, X_in|l.

Definition 3.1. Let f be a real valued function defined on |. A generalized
polynomial p is called a generalized Lagrange interpolant to f from ¢f if

P =L(X, X =, X )

for some distinct points x,, X,, -+, X_in .

The collection of all generalized Lagrange interpolants to f from ¢/ is denoted
by G, (f).

Definition 3.2. A function f defined on | is said to be generalized totally
positiveon | if p>0onl for al p € G, (f).

The collection of all generalized totally positive functions on | is denoted by
grp,.

Theorem 3.1. Let f € G7P,. Then

(i) for eachn, thereexists a constant M_ such that for all choices of n pointsa < x,
< X2< <Xng b,

| X, X0 s X Ju, FIS M (3.1
(ii) for each n, there exists a constant K such that for all p € U, G, (f)
Ipl.<K, (3.2
Proof. Let x, beany point in|. Then
f
o= 10
U, (%)

belongsto GL,, (f) and hencep >0 on . Alsou, >0 on|. Hencef(x)) > 0. Since x;
isan arbitrary point in |,

f>0onl. (3.3

We now show that the bound in (3.1) holds for n = 1. For, suppose (3.1) does
not hold for n = 1. Then there exists a sequence (X) in | such that

‘[xi]ul f\—m as i — .



A Generalization of Totally Positive Functions 395

That is,

F(x)

uy (x)

i
= —f(x ) asi

Ty ()

Since u, is positive and bounded away from zero on |, f(X) — « asi — .
Since | is compact, we may assumethat (x') convergesto some point X’ in |. Choose

apoint o € (a, b) \ {x%. For eachi, let p, =L(a,X; ). Thenby (i) of Theorem
25 foral xel,
f (@)

pi(x) = w(a)’ uy (%) + [, x'y, f.

Dy, (a; x)
Dul( a)

Also

D (o: xi> ' '
[a,x] f= w f) - w@Ff(x) = w(x)f (@)
a, x sz_ Duz(av xi) - DUZ(“' xi)

Since f(x) — oo,
u, (a) f () — u, (X) (o) — 00 as i — oo.
Also, Dy (a,x')— Dy (a,x°),which is positive if a< X° and negative if
o > X0, Therefore,

+o00, if a<x°
—00, if  a>x°

[a,xi]uzf —>{
Chooseapoint B inl suchthat € [a, o) if a <x?and B € (o, b] if a>X°. Then

DU2 ((X,B)
Dy (o)

— —00 as i—>w.

[onx'],,, f-

Therefore, p,(B) — — asi — o, whichisa contradiction, since p, >0 on|l.
This proves that there exists a constant M, such that for all x, € |
| [X]Ju, =M,
Therefore (3.1) holds for n = 1.
Now if p isany ement of U/, ~ GL, (f), thenfor somex inl, p=L(x;; f). Then
p(X) = [Xl]Ulf . Ul (X)
Since (3.1) holdsfor n =1,

I p(X) IS M1||U1 ||w = Kl (Say)



396 Thalmi, B. and Jayasri, C.

Therefore, for all p € Uy~ GL,, (f), [Ipll, < K,. Thus (3.2) aso holds for n = 1.

Next assume that (3.1) and (3.2) hold for some positive integer m. Suppose
(3.1) does not hold for n = m + 1. Then there exists a sequence (X) in 1™, X =

(X,---,X_,) with distinct co-ordinates such that

%% X ], > asioe. (3.4)

Now (X) is a sequence in I™* and since I™* is compact, we may assume that

(X)) converges to some x°=(xf, xg,-..,x?n+l)e|m+l. Now choose a point

ae(@b)\{[x’, x2, -, x% }.For each i, let pimzL(xl,m,xjn;f)and let
P =L, X ;). Thenby part(i) of Theorem 2.5

Dy, Gk, xhyi %)
7 (3.5

Dy el )

Prar () = p(0) + [x0, 2, ], S
SinceU  and U, are ECT-spaces,
Dum(xil,...,xim)% DUm(X;I(_)1”'1Xr(1)1)¢O
even if some of the points X; coincide and
Dyp,, (1,0 i 3%) = Dy, G,y x5 20) # 0

for x # x?,-+, x9,.Inparticular, this holds for x = a. Therefore, by (3.4),

IDUm+1(xi » x;n 'a)l

IDU, (x4 e, xby)]

fl.

|[x1i; “'»xrin+1]Um+1 — asi—> . (3.6)

Since by assumption, (3.2) holdsfor n =m,
|ph(@)]| < Kn (3.7
From (3.5), (3.6) and (3.7)
| Pwin+1(0—’)| - © as i — oo.
Therefore,
| f(@ = Phr(@)] > wasi> . (38)
Now, by (ii) of Theorem 2.5
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Dy, (X1, 1 X1, @)

Dyppy (X100 Ximyr)

f(a) - prin+1(a) = [xi.'”.’x;”""'l'a]Umnf.

Therefore

. . , Dy, @k e xb)
[ xhena], f = (f@ = phaa(@) . prmt it (3)

DUm+2 (.Xi ] x%n+1 )

Now
Dumﬂ({d J.Crin+1) 5 Dyppyr (63 Xhg1) +0 (3.10)
DUm+2(xi " x#n+1r“) DUm+2(x? ” x$n+1'a) ’
From (3.8), (3.9) and (3.10),
bt v, f| = asio . @1)

Then some subsequence of {[xd, -+, xby, a] Um+2f} tends to ether + oo or -

asi — oo. For convenience, we may assume that the sequenceitsdf tends to + oo.
Then

i i i _ i i ;
[xl,---,xm,a,xmﬂ]u f = [x1,~-,xm+1,a]u f - toas - oo,
m+2 m+2

Now, sincel{ . and U, are ECT-spaces,

Dy . (xi, -, xb, a;x) Dy, ., (7, = X a;x)
q

' ' # 0
DUm+1(xi' T x7ln' C() DUnl+1(xi)r ey, X,?l, a)
for x=x’,---, X2, .. Choose B [a,b]\{x’,--, X2, o} such that
sign of Duga(xh s e @ B) _ {—1 if 1imm[x;,...,x;nﬂ’a]umﬂf — oo
DUpg (¥ im ) +1 otherwise
Thus

i i
[xi. veo xb o xt +1] f Dy, (X o Xm @ B)
4 ’ Y .
" " U2 DUm+1(x§ ’ x%n:“)

- —oasi— . (3.12)

Let pi,, =L (xt, -, xb,a xb,q.; ). Again, applying (i) of Theorem 2.5

; ; : ; Dy, (1, ) X, B)
Phea(8) = PR(B) + [xhr o whoa], | f=00 R
Un(X1) 0 Xm
i i i Dy,,,,(x1, - X, @, B)
+ [xl,...,xm,a,me]U f. 7 7
m+2 DUm+1(x1’ e X, (X)
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Now, by assumption, (3.2) holds for n = m. Therefore, ‘pﬁn(B)‘s K, Also, by
(i) of Theorem 2.5,

) ) ) Dy (x{, e X, @)
a)— ptla)=|xi, -, xl, «a , —H o :
f@ = ph@ = [ xhal,, o P
Therefore
iyl - i Dy, (el xb)
bl f = (@~ ph@). e
Now |f(a) — pl,(a)| < If(@)] + K. AlsO
DUm+1(x{1 T xiiﬂt ﬁ) N DUm+1(x:?' T xr(;v B) +0
DUm+1(xi’ T x;n‘ (Z) DUm+1(x;)’ T x'?n’ Of)
Therefore, for largei,
DUm+1(xi.' T xrin' B) <2 DUm+1(xf' " xrg‘u .8)
DUm+1(xi' Y x7l7‘l‘ a) B DUm+1(xf’ T xg’l’ a)
Thus
. Dyps (X8, o, X% B)
Pin2(B) < K + 20f (@] + Kp). 5720 >
G )
. . Dy, ., (xt, -, xb, a PB)
+ [x o ], f 2 -
m+2 DUm+1(x1’ o X CZ)
——wasi— o, by (312).

This is a contradiction. Thus there exists some constant M_, such that

|[Xl’ T erl]Um+lf |< I\/|m+l
for all choices of pointsa< x, <X,<-- <x_, <b. S0 (3.1) holdsfor n=m+ 1 also.
Now letp e U N GL, (f). If p e U, thenby assumption, [jp| <K .Ifpe i\
U, thenp=L(X, X, -, x_; f) form+ Ldistinct points x, <x,< - -<x__inl. Let
g=L(X, X, -, X;f). Thenforall x I,
DUm+1(x11"'lxm;x)

Dy, (1, =) Xm)

p(x) = qx)+ [x1;""xm+1]um+1f-

|DUm+1(xll < Xms .X')|
DUm(xlr lxm)

P < Kin + Mipiq
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DV g g Ce1,m 2|

C2,m+1
< K+ Mpyq. cim " Dy Goartm) by Theorem 2.2
C2m+1
< K+ Mgy = | (= 2 (0 = x5) - (X = X))
Cim
S Kot My 2252 (b= )™ = K iy (say)

Thus there exists a constant K, such that for all p e U, » GL,, (f), [Ipll, <
K..;- Thus(3.2) also hold for n=m+ 1. Using induction on n, weseethat (3.1) and
(3.2) hold for all n.

Remark 7. From Theorem 3.1 and its proof, it can be easily seen that if fisin
GTP,, then f is positive and bounded on .

We are now in a position to prove our main theorem.
Theorem 3.2 Let f € G7P,. Then f is infinitely differentiable on I.

Proof. First we will prove that for each n > 2, there exists a constant R such
that whenever a< x <x,<-- -<x <b,
I, X, - X ]y, FISR, (3.13)

whereV_isthe ECT-system {1, X, %%, -+, X*'}. Fix n> 2. Let X <X,<-- <x ben
distinct pointsin I. Now P _, is the space spanned by V_,. Let p, , be the unique
polynomial in P_, interpolating to f at x;, x,, -+, X, and let q_, be the unique
generalized polynomial in Z{_, interpolating to f at these points. Then, by (ii) of
Theorem 2.5

Dy, (1, %2+, xp)

Dy, _, (X, %3+, Xp—1)

fxn) = Poi(xn) = [x1; ""xn]an-

=[x, X Dy O = %)+ (% — X4) (3.14)

and

DUn(xl'xZ “, Xp)

. DUn_l(xerZ Ty xn—l)

| f(xn) - qn—l(xn)lz [xp "'an]Unf

Then, by Theorem 2.2 and Theorem 3.1,

() = ot ()] < |lx1,~-.anUnf|.§j—'” (= %) (X — Xny)

< Mn Z2n . (xn - xl) (xn - xn—l) (315)

C1,n
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Now p,_, isaso theunique polynomial in P_, interpolatingtoq, , at x;, X,, -+,
X, 1

Therefore, by (ii) of Theorem 2.5

Dy, (x1, -+, %)
Dy, _, (X1, Xn-1)

qn—l(xn) - pn—l(xn) = [x1: :xn]ann—l-

Using Theorem 2.3 there exists apoint &, X, < & < X such that

(n-1)
Tn-1 ()
[xlixZI” xn]ann 1= (r;l L 1)|

Therefore

qr(ln 11)(5) DVn(xll "'an)
(mn—1)1" DVn_l(xll"' ) Xn-1)

qn—l(xn) — Pn-1 (xn)

(n-1)
q(r;l 1_ 1(;? (= xp) (X — xp-1) (3.16)

using the value of the Vandermonde determinants D,, and Dy,_,. Now applying
Theorem 2.1 (Markov inequality),

C
Iae s lle ("7)1“ I i o (3.17)

Sinceq, , € U, ,n GL, (f), by (ii) of Theorem 3.1
la, . lL<K._ (3.18)
From (3.16), (3.17) and (3.18),

n Kn
[-1Cen) = ProaCen)| S =iz Gty O = X0 (o = o)

(3.19)

From (3.14), (3.15) and (3.19)

| f(xn)_ pn—l(Xn)l
cex ] FE
|[X1 Xn]n | (Xn—xl)(xn_xﬂ—l)

<M

_C24n Chs Kn—l _
"o oay ey &Y
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That is,
X, - X v, fF ISR

This proves (3.13). Sincef € G7P,, f is bounded on I. Thus, by Theorem 2.4,
weseethat f e C"2[a, b]. Thusf e C"2[a, b] for all n> 2. Therefore, f isinfinitely
differentiable on [a, b].
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