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A GENERALIZATION OF TOTALLY
POSITIVE FUNCTIONS
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Abstract: A real valued function defined on a closed bounded interval is said to be
generalized totally positive if all of its generalized Lagrange interpolants are positive.
In this paper, we show that a real valued function which is generalized totally positive
is infinitely differentiable.
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1. INTRODUCTION

In [2] T. Popoviciu introduced generalized divided differences based on any
complete Tchebycheff system. Interpolation of functions in an extended complete
Tchebycheff Space (ECT space) can be done by using generalized divided
differences. If f is any function defined on a closed interval [a, b], then an
explicit expression for the generalized polynomial interpolating to f at given points
can be derived in a way similar to the Newton form for Lagrange interpolating
polynomials.

Alan. L. Horwitz and Lee. A. Rubel in [1] introduced totally positive functions
on [–1,1]. We generalize totally positive functions by using generalized Lagrange
interpolants.

Definitions and results from theory of Tchebycheff spaces and generalized
divided differences are discussed in the next section. In section 3, we introduce
generalized totally positive funcions and prove our main result there. Throughout
this paper, we denote the closed bounded interval [a, b] by I.

2. PRELIMINARIES

We refer to chapters 2 and 9 of [3] for the definitions and results in this section.
The results given in this section are those needed to prove our main theorem in the
next section.
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Extended completeTchebycheff spaces.

Definition 2.1. Let u1, u2, . . ., um
 be real valued functions defined on I = [a, b] and

let x1 � x2 �� ��� � x
m
 be points in I. The collocation matrix associated with
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th derivative of u
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i
, i, j = 1, 2, ���, m.
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The Determinant associated with the matrix  is denoted

by 

Definition 2.2. Let 1{ }m
m iU u�  be any collection of functions in Cm–1 (I). U

m
 is

called an extended Tchebycheff system (ET-system) on I if the determinants

associated with the collocation matrix  is positive for all x1 �

x2 ������� x
m
 in I.

Definition 2.3. Let {u1, u2, ���} be any finite or infinite sequence of functions in I.
If for each k, {u1, u2, ..., uk

} forms an ET-system on I, then {u1, u2, ���} is called an
extended complete Tchebycheff system (ECT-system) on I.

Remark 2. The determinant of the collocation matrix arising from an ECT-system
U

m 
= {u1, u2, ��� um

} is denoted by DUm
 (x1, x2, ���, xm

). That is,
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Definition 2.4. A subspace of C(I), finite or infinite dimensional, is called an
Extended complete Tchebycheff space (ECT-space) if it has an ordered basis which
is an ECT-system.

Elements of an ECT-space are called generalized polynomials.

The following theorem gives an estimate for the derivatives of generalized
polynomials.

Theorem 2.1. (cf.[3], p. 370) (Markov inequality) Let �
m
 be an ECT-space on

I. Then there exists a constant c
m
 (depending only on �

m
) such that for each

u ���
m
 and j = 1, 2, ����m – 1,

|| Dju ||��� c
m
 h–j–1 || u ||�

where h is the length of I.

Definition 2.5. Let U
m 

= {u1, u2, ����um
} be an ECT-system on I, and let f be a

sufficiently differentiable function defined on I. Associated with the points x1 ��x2

������� x
m
 in I we define a function on I as follows:

where d
i 
= max {j : x

i 
= x

i–j
}, i = 1, 2, ���, m.

Remark 3. If U
m+1= {u1, u2, ����um

, u
m+1} is an ECT-system on I = [a, b], then the

function in Definition 2.5 with f replaced by u
m+1 is  denoted by

1 1 2( , , , ; ).
mU mD x x x x
�

�

Remark 4. A well-known example of an infinite ECT-system on any interval
I = [a, b] is V = {1, x, x2, ���}. In this case, V forms an ordered basis for �, the space
of polynomials on I. For each n, V

n 
= {1, x, x2, ���, xn–1} is an ECT-system forming a

basis for �
n
, the space of all polynomials of degree atmost n – 1.

Remark 5. (cf.[3], p.30) For the ECT-system V
n 
= {1, x, x2, ���, xn–1} on I, the

determinant DVn
 (x1, x2, ���, xn

) is the well-known Vandermonde determinant. When
x1, x2, ���, xn

 are distinct points in I, this determinant has the following value.
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The following theorem establishes the connection between the determinants
DVn

 (x1, x2, ���, xn
) and DUn

 (x1, x2, ���, xn
), where U

n
 is any ECT-system on I.

Theorem 2.2 (cf [3], p. 367) Let U
n
 be any ECT-system on I = [a, b]. There

exists constants c1,n and c2,n such that for all choices of points x1 < x2 < ����<x
m
 in I

and for any x in I,

where

and for all x � I,

Generalized Divided Differences

Definition 2.6: Suppose U
m 

= {u1, u2, ����um
} is an ECT-system in I. Given any

function f defined on I, its (m – 1)th order divided difference with respect to U
m
 at

m distinct points x1, x2, ���, xm
 in I is defined as

Remark 6. For the ECT-system V
n 
= {1, x, x2, ���, xn–1} on I = [a, b], [x1, x2, ���,

x
n
]Vn

 f is the classical divided difference.

For the classical divided difference, we have the following result.

Theorem 2.3 (cf.[3], p. 47) If f is in Cn–1 [a, b] and if a � x1 � x2 ������� x
n 
� b are

n points, then

1

1 2

( )
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( 1)!n
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�
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for some �, x1 < ��< x
n
.

In this paper, we further make use of the following property of classical
divided difference which can be obtained from the results in section 8 in chapter 2
of [3].

Theorem 2.4. Let n > 1. Let f be a bounded function defined in [a, b]. If there
exists constants M

n
 such that for all a < x1 < x2 <�����< x

n 
< b,

| [x1, x2, ���, xn
]Vn

 f | � M
n
,

then f belongs to Cn–2 [a, b].

As an application of generalized divided differences, interpolation by functions
in an ECT-space can be done. That is, if �

m
 is an ECT-space on I = [a, b] and if

x1 < x2 < ����< x
m
 are prescribed points in I, then for any given function f defined on

I, there corresponds a unique generalized polynomial in �
m
 which interpolates to f

at the points x1 < x2 < ����< x
m 

(cf.[3]). An explicit expression for this unique
generalized polynomial p

m
 in �

m
 and also an expression for the error f – p

m
 can be

derived.

Theorem 2.5 (cf.[3]. p. 370) Let �
m
 be an ECT-space on I = [a, b] and let  x1,

x2, ���, x
m
 be distinct points in I. Let f  be any function defined on I, which is

sufficiently differentiable.

(i) Then an explicit expression for the unique generalized polynomial p
m
 in �

m

satisfying the condition

p
m
 (x

i
) = f(x

i
),      i = 1,2, ���, m

is given by

where U
m 

= {u1, u2, ���, um
} is an ECT-system forming a basis for �

m
 and  U

k 
=

{u1, u2, �����uk
}, k = 1, 2, ���, m.

(iii)The error is given by

where U
m+1 = {u1, u2, ����um

, u
m+1} is an ECT-system on I containing U

m
.



394 Thalmi, B. and Jayasri, C.

3. GENERALIZED TOTALLY POSITIVE FUNCTIONS

Throughout this section, � is an infinite dimensional ECT-space on I = [a, b] with
an ordered basis U = {u1, u2, ���} which is an ECT-system on I. For each m, �

m
 is the

ECT- space spanned by U
m 

= {u1, u2, �����um
}.

For a function f defined on I, we denote by L(x1, x2, ���, x
m
; f), the unique

generalized polynomial in �
m
 interpolating to f at m distinct points  x1, x2, ���, xm

 in I.

Definition 3.1. Let f be a real valued function defined on I. A generalized
polynomial p is called a generalized Lagrange interpolant to f from � if

p = L(x1, x2, ���, xm
; f)

for some distinct points x1, x2, ���, xm
 in I.

The collection of all generalized Lagrange interpolants to f from � is denoted
by ��

�
 (f).

Definition 3.2. A function  f defined on I is said to be generalized totally
positive on I if p > 0 on I for all p ����

�
 (f).

The collection of all generalized totally positive functions on I is denoted by
���

�
.

Theorem 3.1. Let f �����
�
. Then

(i) for each n, there exists a constant M
n
 such that for all choices of n points a ��x1

< x2 < ����<x
n 
��b,

| [x1, x2, ���, xn
]Un 

f | � M
n

(3.1)

(ii) for each n, there exists a constant K
n
 such that for all p ���

n 
����

�
 (f)

|| p ||��� K
n

(3.2)

Proof. Let x1 be any point in I. Then

1
1

1 1

( )
.

( )

f x
p u

u x
�

belongs to ��
�
 (f) and hence p > 0 on I. Also u1 > 0 on I. Hence f(x1) > 0. Since x1

is an arbitrary point in I,

f > 0 on I.  (3.3)

We now show that the bound in (3.1) holds for n = 1. For, suppose (3.1) does
not hold for  n = 1. Then there exists a sequence (xi) in I such that

1
[ ] .i

Ux f as i�� ��
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That is,

Since u1 is positive and bounded away from zero on I, f(xi) ��� as i ���.
Since I is compact, we may assume that (xi) converges to some point x0 in I. Choose

a point ��� (a, b) \ {x0}. For each i, let 2 ( , ; ).i ip L x f� �  Then by (i) of Theorem

2.5, for all x ��I,

Also

Since f(xi) ���,

u1 (�) f (xi) – u1 (x
i) f(�) � ��as i ���.

Also, 
2 2

0( , ) ( , ),i
U UD x D x� � � which is positive if �< x0 and negative if

��> x0. Therefore,

Choose a point � in I such that ����[a, �) if ��< x0 and ����(�, b] if ��> x0. Then

�

� �
� � �� ��

�
2

2

( , )
[ , ] . .

( )
Ui

U
U

D
x f as i

D

Therefore, 2 ( )ip � � ��  as i ���, which is a contradiction, since 2 0ip �  on I.

This proves that there exists a constant M1 such that for all x1 � I
| [x1]U1 f | � M1.

Therefore (3.1) holds for n = 1.

Now if p is any element of �1 ����� (f), then for some x1 in I, p = L(x1; f). Then

p(x) = [x1]U1 f . u1 (x)

Since (3.1) holds for n = 1,

1 1 1| ( ) | | |p x M u K
�

� �   (say)
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Therefore, for all p ���1 ����� (f), ||p||����K1. Thus (3.2) also holds for n = 1.

Next assume that (3.1) and (3.2) hold for some positive integer m. Suppose
(3.1) does not hold for n = m + 1. Then there exists a sequence (xi) in Im+1, xi =

1 1( , , )i i
mx x �� with distinct co-ordinates such that

1
1 2 1| , , , | .

�
�� � � � ��� ��

m

i i i
m U

x x x f as i (3.4)

Now (xi) is a sequence in Im+1 and since Im+1 is compact, we may assume that

(xi) converges to some � �0 0 0 0 1
1 2 1, , , .m

mx x x x I �
�� ��  Now choose a point

0 0 0
1 2 1( , ) \{ , , , }.ma b x x x ��� � For each i,  let � �1 , , ;i i i

m mp L x x f� � and let

1 1 1( , , ; ).i i i
m mp L x x f� �� �  Then by part(i) of Theorem 2.5

(3.5)

Since �
m
 and �

m+1 are ECT-spaces,

� � � �0 0
1 1, , , , 0

m m

i i
U m U mD x x D x x� �� �

even if some of the points 0
jx coincide and

for . In particular, this holds for x = �. Therefore, by (3.4),

(3.6)

Since by assumption, (3.2) holds for n = m,

(3.7)

From (3.5), (3.6) and (3.7)

Therefore,

(3.8)

Now, by (ii) of Theorem 2.5
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Therefore

(3.9)

Now

(3.10)

From (3.8), (3.9) and (3.10),

(3.11)

Then some subsequence of  tends to either + � or -�
as i ���. For convenience, we may assume that the sequence itself tends to ± �.
Then

Now, since �
m+1 and �

m+2 are ECT-spaces,

for 0 0
1 , , , .mx x x� ��  Choose 0 0

1[ , ] \{ , , , }ma b x x�� �� such that

sign of  

Thus

(3.12)

Let  Again, applying (i) of Theorem 2.5



398 Thalmi, B. and Jayasri, C.

Now, by assumption, (3.2) holds for n = m. Therefore, ( ) .i
m mp K� �  Also, by

(ii) of Theorem 2.5,

Therefore

Now  Also

Therefore, for large i,

Thus

� – � as i ��� ,  by (3.12).

This is a contradiction. Thus there exists some constant M
m+1 such that

|[x1, ���, xm+1]Um+1
f | � M

m+1

for all choices of points a � x1 < x2 <����<x
m+1 � b. So (3.1) holds for n = m + 1 also.

Now let p ���
m+1 ����� (f). If p ���

m
, then by assumption, ||p||����Km

. If p ���
m+1\

�
m
, then p = L(x1, x2, ���, xm+1; f) for m + 1 distinct points x1 < x2 <�����<x

m+1 in I. Let
q = L(x1, x2, ���, xm

; f). Then for all x ��I,
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      by Theorem 2.2

Thus there exists a constant K
m+1 such that for all p ���

m+1 ����� (f), ||p||���
K

m+1. Thus (3.2) also hold for n = m + 1. Using induction on n, we see that (3.1) and
(3.2) hold for all n.

Remark 7. From Theorem 3.1 and its proof, it can be easily seen that if f is in
���

�
, then f is positive and bounded on I.

We are now in a position to prove our main theorem.

Theorem 3.2 Let f � ���
�
. Then f is infinitely differentiable on I.

Proof. First we will prove that for each n � 2, there exists a constant R
n
 such

that whenever a ��x1 < x2 <�����<x
n
 � b,

|[x1, x2, ���, xn
]Vn

 f | � R
n

(3.13)

where V
n
 is the ECT-system {1, x, x2, ���, xn–1}. Fix n � 2. Let x1 < x2 <�����<x

n
 be n

distinct points in I. Now �
n-1 is the space spanned by V

n–1. Let p
n–1 be the unique

polynomial in �
n–1 interpolating to f at x1, x2, ���, xn–1 and let q

n–1 be the unique
generalized polynomial in �

n–1 interpolating to f at these points. Then, by (ii) of
Theorem 2.5

1 1 1[ , , ] ( ) ( )
nn V n n nx x f x x x x �� � � �� � (3.14)

and

| 

Then, by Theorem 2.2 and Theorem 3.1,

(3.15)

|
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Now p
n–1 is also the unique polynomial in �

n–1 interpolating to q
n–1 at x1, x2, ���,

x
n–1.

Therefore, by (ii) of Theorem 2.5

Using Theorem 2.3 there exists a point �, x1 < ��< x
n
 such that

Therefore

                                          (3.16)

using the value of the Vandermonde determinants DVn
 and DVn–1. Now applying

Theorem 2.1 (Markov inequality),

(3.17)

Since q
n–1 � �

n–1 ����� (f), by (ii) of Theorem 3.1

|| q
n–1 ||����Kn–1 (3.18)

From (3.16), (3.17) and (3.18),

(3.19)

From (3.14), (3.15) and (3.19)

1
1

1 1

| ( ) ( ) |
|[ , , ] |

( ) ( )n

n n n
n V

n n n

f x p x
x x f

x x x x
�

�

�
�

� �
�

�

2, 1 1
1

1,

. ( )
( ) ( 1)!

n n n
n nn

n

c c K
M R say

c b a n
� �

�� � � �
� �
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That is,

|[x1, ���, xn
]Vn

 f | � R
n

This proves (3.13). Since f � ���
�
, f is bounded on I. Thus, by Theorem 2.4,

we see that f � Cn–2 [a, b]. Thus f � Cn–2 [a, b] for all n � 2. Therefore, f is infinitely
differentiable on [a, b].
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