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DIVIDED DIFFERENCE METHOD USING
TRIANGULAR FUZZY NUMBER

Abstract: In this paper the polynomial interpolation of triangular fuzzy number is
discussed. First general form of the polynomial with fuzzy coefficients is proposed.
The divided difference interpolation method is studied with triangular fuzzy number
and an example is provided to illustrate the algorithm.
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I. INTRODUCTION

In real life problem data’s are imprecise and uncertain, fuzzy set theory is the best
approximation theory to deal with uncertain values. Many researchers focus on fuzzy
numbers to study mathematical programming, numerical problems, stochastic and
statistical problems.

Interpolation method is the most popular method useful in fields of engineering,
economy, business oriented problems. Chenyi Hu et al. (7) have discussed interval
polynomial interpolation problems in Lagrange form. Hussein et al. (10) have
discussed interpolation of fuzzy data using cubic splines.

In this paper interpolation polynomial of triangular fuzzy number is formulated
on comparing with divided difference interpolation problem. The existence theorem
and some of its properties are dealt with. An algorithm is proposed for divided
difference interpolating method using triangular fuzzy number illustrated by an
example.

II. PRELIMINARIES

Definitions 2.1

A triangular fuzzy number is represented by three points as A = (al, ac, ar). Its
membership function is interpreted as
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Definitions 2.2

Let � ��� ( , , ), ( , , )l c r l c ra a a a b b b b  be two triangular fuzzy numbers. Then � ��a b  if and

only if al = bl, ac = bc, ar = br

Definitions 2.3

The arithmetic operations of triangular fuzzy numbers are defined as

(i) � � � � ��� ( , , )l l c c r ra b a b a b a b
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Definitions 2.4

Let � � �����0 1, ma a a  be triangular fuzzy numbers.  A

function � � �����0 1( , , )n mP x a a a  denoted by � ( ),nP x  is called the n-order

polynomial with triangular fuzzy numbers coefficients, if it satisfies the following
conditions.

(i) � ( )nP x  is an n-order polynomial about x,

(ii) � ( )nP x  is a 1-order polynomial about � � �����0 1, ma a a

Definitions 2.5

Let Q
0
(x), Q

1
(x) ... ... . ., Q

m
(x) be m + 1 polynomials whose degree is no more than

n and at least one of them is a polynomial of degree n. The fuzzy triangular
polynomials � ( )nP x  has the following form
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� � � �� � � �����0 0 1 1( ) ( ) ( ) ( )n m mP x a Q x a Q x a Q x

The set of all triangular fuzzy polynomials of degree m (m � n) is denoted by �nP

III. INTERPOLATION POLYNOMIALS OF
FUZZY NUMBERS

In this section the interpolation problem of triangular fuzzy numbers is formulated
in detail by comparing with the divided difference interpolation problem The
existence theorem of solutions investigated and some related properties are
developed.

Definition 3.1

Let x
0
, x

1
, …………. x

n
 be n + 1 distinct nodes.

Given y
0
 = f(x

0
), y

1
 = f(x

1
), ... ... ... , y

n
 = f (x

n
)

The problem is to find a polynomial P
n
(x) � P

n
, called an interpolating

polynomials, such that

P
n
(x

i
) = y

i
 (i = 0, 1, 2………n)

Theorem 3.1

There exists a unique polynomial P
n
(x) � P

n
 such that P

n
(x

i
) = y

i
 for i = 0, 1, ... ... ... n

The divided differences of P
n
(x) is defined by
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for the n + 1 pairs (x
i
, y

i
) in which (y

i
) are triangular fuzzy numbers.
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Theorem 3.2

Let x
0
, x

1
, ... ... ... . x

n
 be n + 1 distinct nodes and let � � ( , , )l c r

l i i iy y y y  i = 0, 1, 2 ... ... n

be n + 1 triangular fuzzy numbers. There exists at least one fuzzy polynomial such

that ��� ( )n i lP x y  for i = 0, 1, 2 ... ... n.

Proof

To prove existence let us use a constructive approach providing an expression

for � ( )nP x  for arbitrary y
i
, i – 0, 1, 2 ... ... . . n

Suppose that P
n
(x, y

0
, y

1
, ... ... ... . . n) is an interpolating polynomial such that

� �0 1( , , ,... ... ... .. ) , ( 0,1,2 ... ... ... )n i iP x y y n y i n

Define � �� ( ) ( ( ) ( ( ), ( ), ( ))l l c r
n n n n nP x P x P x P x P x

where �
�
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Then � ( )nP x satisfies the interpolation condition

Since �
�

� � �
inf

0 1
0,1, ... ....
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As a consequence the interpolating polynomial of triangular fuzzy number exists.

Theorem 3.3

The divided differences form of the interpolating polynomial of fuzzy numbers is
given by
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3.4. Numerical Example

Construct divided difference table for the data

x f(x)

0.5 (1.610, 1.625, 1.636)

1.5 (5.701, 5.875, 5.901)

3.0 (30.10, 31.0, 32.0)

5.0 (5.701, 5.875, 5.901)

6.5 (281.0, 282.125, 283.01)

8.0 (520, 521.0, 522.0)

And Find the interpolating polynomial and an approximation to the value of
f(7).
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Solution : We have the following divided difference table.

x f(x) l r
l
(x)

0.5 (1.610, 1.625, 1.636) 1 (4.065, 4.250, 4.291)

1.5 (5.701, 5.875, 5.901) 2 (5.3773, 5.0, 4.747)

3.0 (30.10, 31.0, 32.0) 3 (0.9786, 1.0, 1.1199)

5.0 (5.701, 5.875, 5.901) 4 (0.0162, 0.0001, 0.0085)

6.5 (281.0, 282.125, 283.01) 5 (0.0003, 0, 0.0004)

8.0 (520, 521.0, 522.0)

0

( )
( )
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x x� �
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�
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P
n
(x) = (1.610, 1.625, 1.636) + (4.065, 4.25, 4.291) (x – x

o
)

+ (5.3773,5,4.747) (x – x
o
) (x – x

1
)

+ (.9024,1,1.1199) (x – x
o
) (x – x

1
) (x – x

2
)

+ (0.0162,0.0001,0.0085) (x – x
o
) (x – x

1
) (x – x

2
) (x – x

3
)

+ (0.0003,0,0.0004) (x – x
o
) (x – x

1
) (x – x

2
) (x – x

3
) (x – x

4
)

= (1.610,1.625,1.636) + (4.065,4.25,4.291) (x – 0.5)

+ (5.3773,5,4.747) (x – 0.5) (x – 1.5)

+ (0.9024,1,1.1199) (x – 0.5) (x – 1.5) (x – 3)

+ (0.0162,0.0001,0.0085) (x – 0.5) (x – 1.5) (x – 3)

(x – 5) + (0.0003, 0, 0.0004) (x – 0.5) (x – 1.5) (x – 3) (x – 5) (x – 6.5)

Put x = 7

– (1.610,1.625,1.636) + (26.42,27.62,27.89) + (192.23,178.75,169.70)

+ (129.04,143,160.14) + (4.6332,0.0286,2.431)

+ (0.0429,0,00.72)

( ) (353.97,351.02,361.85)nP x ��
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