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Abstract: This research effort is to track the target even though the range measurements are not available. Unscented 
angles-only Kalman filter (UAKF) is used for bearing and elevation target tracking. The mathematical modeling 
and simulation have been carried out. It is shown that UAKF algorithm effectively tracks the target in underwater 
environment.
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INTRODUCTION1. 
In underwater, passive target tracking is generally followed to track a submarine target [1]. The observer 
submarine is assumed to be moving at low speed to reduce self noise for tracking of the targets. These 
days, submarines with sonars are coming up having the facility to get target elevation measurements also. 
In this paper, research is towards submarine (observer) tracking another submarine using elevation and 
bearing measurements .As angle measurements are only available, the process is highly nonlinear and 
hence unscented angles-only Kalman filter (UAKF), a non linear filter is explored for this application, as 
shown in the Figure 1. [1-6].The estimated target range, course, bearing and speed (RCBS) are utilized in 
weapon guidance algorithm (which is not discussed here).

Section 2 deals with modeling of state vector, measurements and UAKF. In section 3, generation of 
measurements and creation of scenarios are discussed. Section 4 deals with results obtained in simulation.

Figure 1: Block diagram of passive target tracking using bearing and elevation measurements

MATHEMATICAL MODELLING [3-4]2. 

A. Measurements
Let Xs(k) be state vector and it is defined as

 X R R RS
T( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]k k k k k k kx y z x y z=     (1)
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where,   x y zk k k k k kx y z( ), ( ), ( ), ( ), ( ) ( )R R Rand  are velocity and range components in x, y and z directions. 
Azimuth and elevation angles are considered w.r.to True North. Bm is modeled as
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Variance of x(k) is sb
2. The measurement matrix is
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The target state dynamic equation is

 Xs(k + 1) = fXs(k) + b(k + 1) + Gw(k) (4)

where f is given by
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where t is sample time and
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b is b(k + 1) = [ ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))]0 0 0 1 1 10 0 0 0 0 0- + - - + - - + -x k x k y k y k z k z k  (7)

x0(k) and y0(k) are observer position components.

w(k), is Gaussian with variance equal to

 E QT T[ ( ) ( ) ( ) ( )]G Gk k k k ijw w d=  (8)
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B. Unscented Kalman Filter Algorithm
A matrix of sigma vectors is formed [2] to calculate the mean and covariance of y.

 c0 = x

 ci = x x i
+ +( )( )L Pl  i = 1, …, L
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- +( ) -

( )L P
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 W0
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where l = a2(L + k) - L

a is a scaling parameter. Here a, k, b are chosen as 0.001,0 and 2 respectively. The vectors ci are 
propagated as follows,

 yi = g(ci) i = 1, …, 2L (11)
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UKF implementation is as follows [3-9].

C. Unscented Kalman Filter Algorithm

1. Sigma point state vectors are presented as

  X X X XS S S( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )k k k n p k k n p k= + + - +ÈÎ ˘̊l l  (14)

2. The same are modified using eqn. (2),
3. The state vector is predicted as
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4. The covariance matrix is predicted as
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5. The state vectors are updated as
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6. Then measurement predicted as
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8. The cross covariance is
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9. Kalman gain is
  K P P( )k xy yy+ = -1 1  (21)
10. The state is estimated as
  X X K( | ) ( | ) ( )( ( | ) ( | )k k k k k y k k y k k+ + = + + + + + - +1 1 1 1 1 1 1  (22)
11. And its covariance is
  P P K P K T( | ) ( | ) ( ) ( )k k k k k kyy+ + = + - + +1 1 1 1 1  (23)

Algorithm flow is shown in Figure 3. [3-9].

Figure 3: UAKF process

GENERALISED SIMULATOR3. 
Let initial position of the target be (xt, yt, zt) and the target moves with velocity vt. After time t seconds, 
observer position changes and the change in the observer position is given by

 dx0 = v0 ¥ sin(ocr) ¥ sin(oph) ¥ t (24)
 dy0 = v0 ¥ cos(ocr) ¥ sin(oph) ¥ t (25)
 dz0 = v0 ¥ cos(oph) ¥ t (26)

where ocr and oph are observer course and pitch respectively. Now the new observer position becomes
 x0 = x0 + dx0 (27)
 y0 = y0 + dy0 (28)
 z0 = z0 + dz0 (29)

Figure 4: Target and observer positions
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From Figure 4

 xt = Rxy ¥ sin(B) (30)

 yt = Rxy ¥ cos(B) (31)

 sin(q) = Rxy/R (32)

Substituting equations (28) in (26) and (27)

 xt = R ¥ sin(q) ¥ sin(B) (33)

 yt = R ¥ sin(q) ¥ cos(B) (34)

 zt = R ¥ cos(q) (35)

Figure 5: Target and observer velocities

When the target is in motion with velocity vt, change in target position after t seconds, from Figure 5.

Figure 6: Block diagram of TMA in simulation mode

 dxt = vt ¥ sin(tcr) ¥ sin(tph) ¥ t (36)
 dyt = vt ¥ cos(tcr) ¥ sin(tph) ¥ t (37)
 dzt = vt ¥ cos(tph) ¥ t (38)

where tcr and tph are target course and pitch respectively.

Now the new target position is

 xt = xt + dxt (39)
 yt = yt + dyt (40)
 zt = zt + dzt (41)
Target true bearing, range and elevation are



272 V. Lakshmi Bharathi, S. Koteswara Rao, B. Omkar Lakshmi Jagan and M. Kavitha Lakshmi

 true bearing = tan- -
-

Ê
ËÁ

ˆ
¯̃

1 0

0

x x
y y

t

t
 (42)

 true range = ( ) ( ) ( )x x y y z zt t t- + - + -0
2

0
2

0
2  (43)

 true elevation = tan-

-
Ê
ËÁ

ˆ
¯̃

1

0

R xy

tz z
 (44)

Since the measurements are affected by noise in real situations, noise is added to these measurements.
 Measured bearing = true bearing + sigma b
 Measured range = true range + sigma r
 Measured elevation = true elevation + sigma e

where sigma b, sigma r and sigma e are 1s values of white Gaussian process. The details are shown in 
Figure 6.

SIMULATION AND RESULTS4. 
It is assumed that experiment is conducted at favorable environmental conditions and hence the angle 
measurements are available continuously. Simulation is realised on a personal computer using Matlab. The 
scenarios chosen for evaluation of algorithm are shown in Table 1. For example, scenario1 describes a target 
moving with bearing of 45° with course and speeds of 255° and 10 m/s respectively. The elevation angle is 
135°. The bearing and elevation measurements are corrupted with 0.33°(1s) and 0.33°(1s) respectively.

In simulation, estimated and actual values are available and hence the validity of the solution based 
on certain acceptance criterion is possible. The following acceptance criterion is chosen. The solution is 
converged when error in estimated course, speed and range are <= 3°, <= 5 m/s and <= 8% respectively.

The errors in estimated range, speed and course for scenario 1 are presented in Figure 7, Figure 8 and 
Figure 9 respectively.

The solution is converged when the course, speed and range are converged. The convergence time 
(seconds) for the scenarios is given in Table 2.

In simulation, it is observed that the estimated course of the target, speed and range of the target are 
converged at 405th sample, 65th sample and 152nd sample respectively for scenario1.So, for scenario 1, the 
total solution is obtained at 405th sample. Similarly for the other scenario the convergence time is shown 
in Table 2.

Table 1 
Input parameters chosen for the algorithm

Scenario Initial range (m) Bearing (deg) Elevation (deg) Pitch (deg) Course (deg)
1 3000 45 135 135 255
2 4500 45 135 135 275

Table 2 
Convergence time in samples for the chosen scenarios

Scenario Course Elevation Range Speed Total solution
1 405 126 152 65 405
2 409 3 64 60 409
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Figure 7: Error in range estimate

Figure 8: Error in speed estimate

Figure 9: Error in course estimate
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Based on these results, UAKF is recommended for passive target tracking and in particular, submarine to 
submarine scenario, when elevation measurements are also available along with bearing measurements.
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