C-ALGEBRA AS A POSET

Dr. Sushil Kumar Agarwal

Abstract

ABSTARCT: In this paper we define a partial ordering \leq on a C Algebra and prove that the centre $B(A)$ of a C-algebra A with T becomes a Boolean algebra under this partial ordering. We derive a number of necessary and sufficient conditions for a C-algebra $\left\langle A, v, \wedge^{\prime}\right\rangle$ to become a Boolean algebra.

INTRODUCTION

Kleene [3] introduced the notion of a regular extension of classical logic. For our purpose a regular extension of an algebra A is obtained by adjoining a new element U (for "un Known", "undetermined" or undefined") to A and extending the operations on A to $A \cup\{U\}$. If A is the two element Boolean algebra $B=\{T, F\}$, then $A \cup\{U\}:=\{T, F, U\}$ is denoted by C.

Guzman and squier [2] introduced the variety of C-algebras as the veriety generated by this 3-element algebra $\mathrm{C}=\{\mathrm{T}, \mathrm{F}, \mathrm{U}\}$ which is the algebraic form of the three valued conditionallogic. U.M. Swamy, GC. Rao and R.V.G Ravi Kumar [6] introduced the concept of the centre of a C-algebra A which is denoted by $\mathrm{B}(\mathrm{A})$ and proved that the centre of a C -algebra is a Boolean algebra. Many mathematicians like Berman. J, McCarthy. J, Kleene. S have worked on three valued logic.

In this paper we introduce a partial ordering \leq on a C -Algebra and study the properties of C -algebra as a poset. We prove that the centre $\mathrm{B}(\mathrm{A})$ of a C -algebra A with T becomes a Boolean algebra under this partial ordering. We derive a number of necessary and sufficient conditions for a C -algebra $\langle\mathrm{A}, \vee, \wedge>$ to become a Boolean algebra.

1. Preliminaries

In this section we recall the definition of C -algebra and some results from [2] and [6]. Also we prove some more results in a C -algebra which will be required later.

Definition 1.1 [2]: By a C-algebra we mean an algebra of type ($1,2,2$) with operations ${ }^{\prime}, \wedge$ and \vee satisfying the following identities.
(a) $x^{\prime \prime}=x$
(b) $(x \wedge y)^{\prime}=x^{\prime} \vee y^{\prime}$
(c) $(\mathrm{x} \wedge \mathrm{y}) \wedge \mathrm{z}=\mathrm{x} \wedge(\mathrm{y} \wedge \mathrm{z})$
(d) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
(e) $(x \vee y) \wedge z=(x \wedge z) \vee\left(x^{\prime} \wedge y \wedge z\right)$
(f) $x \vee(x \wedge y)=x$
(g) $(x \wedge y) \vee(y \wedge x)=(y \wedge x) \vee(x \wedge y)$

Example 1.2 [2]: The two element algebra $B=\{T, F\}$ is a C-algebra with operations ' \wedge and \vee defined as in the following table.

X	X^{\prime}
T	F
F	T

\wedge	T	F
T	T	F
F	F	F

V	T	F
T	T	T
F	T	F

Example : $\mathbf{1 . 3}$ [2] : The 3 - element algebra $\mathrm{C}=\{\mathrm{T}, \mathrm{F}, \mathrm{U}\}$ is a c - algebra with operations \vee, \wedge^{\prime}, defined as in the following tables.

X	X^{\prime}
T	F
F	T
U	U

\wedge	T	F	U
T	T	F	U
F	F	F	F
U	U	U	U

V	T	F	U
T	T	T	T
F	T	F	U
U	U	U	U

Note 1.4 [2]:

(i) Identities $1.1 \mathrm{a}, 1.1 \mathrm{~b}$ imply that the variety of C -algebras satisfies all the dual statements of 1.1 b to 1.1 g
(ii) \wedge and \vee are not commutative in C
(iii) The ordinary right distributive law of \wedge over \vee fail in C
(iv) Every Boolean algebra is a C -algebra
(v) Throughout this paper Arepresents a C -algebra unless otherwise mentioned.

Lemma: 1.5 [2]: Every C - algebra satisfies the following laws
(a) $x \wedge x=x$
(b) $x \wedge y=x \wedge\left(x^{\prime} \vee y\right)$
(c) $\mathrm{x} \vee\left(\mathrm{x}^{\prime} \wedge \mathrm{x}\right)=\mathrm{x}$
(d) $\left(x \vee x^{\prime}\right) \wedge y=(x \wedge y) \vee\left(x^{\prime} \wedge y\right)$
(e) $\left(x \vee x^{\prime}\right) \wedge x=x$

Lemma 1.6 [6]: Every C - algebra satisfies the laws
(a) $x \vee x^{\prime}=x^{\prime} \vee x$
(b) $x \vee y \vee x=x \vee y$
(c) $x \wedge x^{\prime} \wedge y=x \wedge x^{\prime}$

Lemma 1.7 [6]: If a \in A then
(i) a is left Identity for \wedge if and only if a is right Identity for \wedge
(ii) a is left identity for \vee if and only if a is right identity for \vee

Definition 1.8 [2]: A is said to have $T(\operatorname{and} F)$. if there is an Identity for \wedge. In this case we write T for the Identity for \wedge and F in place of T^{\prime}

Lemma 1.9 [2]: Let A be with T and $\mathrm{x}, \mathrm{y} \in \mathrm{A}$.
(a) $x \vee y=F \quad$ if and only if $\quad x=y=F$
(b) if $x \vee y=T$ then $x \vee x^{\prime}=T$

Lemma: $\mathbf{1 . 1 0}$ [2]: Every C -algebra with T satisfies the law $\mathrm{x} \vee \mathrm{T}=\mathrm{x} \vee \mathrm{x}^{\prime}$
Theorem 1.11[6]: The following are equivalent in A.
(a) A is a Boolean algebra
(b) $x \vee(y \wedge x)=x \quad$ for all $x, y \in A$
(c) $x \wedge y=y \wedge x \quad$ for all $x, y \in A$
(d) $(x \vee y) \wedge y=y \quad$ for all $x, y \in A$
(e) $\mathrm{X} \vee \mathrm{X}^{\prime}$ is Identity for \wedge for all $\mathrm{X} \in \mathrm{A}$
(f) $x \vee x^{\prime}=y \vee y^{\prime} \quad$ for all $x, y \in A$
(g) A has a right zero for \wedge
(h) For any $x, y \in A$, there exists $a \in A$ such that $x \wedge a=y \wedge a=a$.
(i) For any $x, y \in A$ if $x \vee y=y$ then $y \wedge x=x$

Definition 1.12 [6]: Let A be with T. An element $x \in A$ is called a central element of A if $x \vee x^{\prime}=T$. The set $\left\{x \in A \mid x \vee x^{\prime}=T\right\}$ of all central elements of A is called the centre of A and is denoted by $\mathrm{B}(\mathrm{A})$.

Theorem: 1.13: let Abe with T. Then B (A) is a Boolean algebra with induced operations \wedge, \vee and '

Note: 1.14: (i). a is the identity for \wedge if and only if a^{\prime} is Identity for \vee
since $\mathrm{a} \wedge \mathrm{x}=\mathrm{x}=\mathrm{x} \wedge \mathrm{a}$ for all $\mathrm{x} \in \mathrm{A} \Leftrightarrow \mathrm{a}^{\prime} \vee \mathrm{x}=\mathrm{x}=\mathrm{x} \vee \mathrm{a}^{\prime}$ for all $\mathrm{x} \in \mathrm{A}$.
(ii) observe that if Identity for \wedge exists then it is unique and it is denoted by T , then T^{\prime}, denoted by F , is the unique Identity for \vee

Theorem: 1.15: Let $\mathrm{a} \in \mathrm{A}$. Then the following are equivalent.
(1) a is left Identity for \wedge
(2) a is right Identity for \wedge
(3) a is Identity for \wedge
(4) a^{\prime} is left Identity for v
(5) a^{\prime} is right Identity for v
(6) a^{\prime} is Identity for v

2. Some Properties of C-Algebra

Guzman \& Squier [2] proved that if $\mathrm{a} \in \mathrm{A}$ and $\mathrm{a}^{\prime}=\mathrm{a}$ then a is left zero for both \vee and \wedge. Now we prove the converse.

Theorem 2.1: Let $\mathrm{a} \in$ A.Then $\mathrm{a}^{\prime}=\mathrm{a}$ if andonly if a is leftzero for both \vee and \wedge
Proof: Suppose that a is left zero for both \vee and \wedge
$a \wedge x=a=a \vee x$ for all $x \in A$
$a^{\prime}=\quad a^{\prime} \vee\left(a \wedge a^{\prime}\right) \quad(b y L e m m a 1.5 c)$
$=\quad \mathrm{a}^{\prime} \vee \mathrm{a} \quad(\mathrm{by}(1))$
$=\quad \mathrm{a} \vee \mathrm{a}^{\prime} \quad$ (by Lemma $1.6(\mathrm{a})$
$=\mathrm{a} \quad$ by (1)
Hence $\mathrm{a}^{\prime}=\mathrm{a}$
In a C -algebra A with T , if $\mathrm{q}=\mathrm{p}^{\prime}$ then $\mathrm{p} \vee \mathrm{q}=\mathrm{T}$ and $\mathrm{p} \wedge \mathrm{q}=\mathrm{F}$ need not hold, for example in $\mathrm{C}, \mathrm{U} \vee \mathrm{U}^{\prime}=\mathrm{U} \wedge \mathrm{U}^{\prime}=\mathrm{U}$. But we prove the converse in the following.

Theorem 2.2: Let A be a C - algebra with T and $\mathrm{p}, \mathrm{q} \in \mathrm{A}$.

$$
\text { If } \mathrm{p} \wedge \mathrm{q}=\mathrm{F}, \mathrm{p} \vee \mathrm{q}=\mathrm{T} \text { then } \mathrm{q}=\mathrm{p}^{\prime}
$$

Proof. Let $\mathrm{p} \wedge \mathrm{q}=\mathrm{F}, \mathrm{p} \vee \mathrm{q}=\mathrm{T}$

$$
\begin{align*}
& \text { Now } \mathrm{p} \vee \mathrm{q}=\mathrm{T} \Rightarrow \mathrm{p} \vee \mathrm{p}^{\prime}=\mathrm{T} \tag{1}\\
&\text { Now } \mathrm{q}=\mathrm{By} 1.9) \tag{1}\\
& \mathrm{T} \wedge \mathrm{q}=\left(\mathrm{p} \vee \mathrm{p}^{\prime}\right) \wedge \mathrm{q} \quad(\mathrm{By}(1)) \tag{1.5d}\\
&=(\mathrm{p} \wedge q) \vee\left(\mathrm{p}^{\prime} \wedge q\right) \\
&=\mathrm{F} \vee\left(\mathrm{p}^{\prime} \wedge \mathrm{q}\right) \\
&=\left(\mathrm{p}^{\prime} \wedge \mathrm{p}\right) \vee\left(\mathrm{p}^{\prime} \wedge q\right)(B y(1)) \\
&=\mathrm{p}^{\prime} \wedge(\mathrm{p} \vee q)=\mathrm{p}^{\prime} \wedge T=\mathrm{p}^{\prime} \\
& \text { Hence } q=\mathrm{p}^{\prime}
\end{align*}
$$

By 1.5 b , we know that in a C-algebra, $x \wedge y=x \wedge\left(x^{\prime} \vee y\right)$. Now we prove the following.

Theorem 2.3 Every C-algebra satisfies the laws.
(i) $x \wedge y=\left(x^{\prime} \vee y\right) \wedge x$,
(ii) $x \vee y=\left(x^{\prime} \wedge y\right) \vee x$

Proof:

$$
\begin{array}{rlrl}
\mathrm{x} \wedge \mathrm{y} & = & \mathrm{x} \wedge\left(\mathrm{x}^{\prime} \vee \mathrm{y}\right) \\
& =\left(\mathrm{x} \wedge \mathrm{x}^{\prime}\right) \vee(\mathrm{x} \wedge \mathrm{y}) \\
& =\left(\mathrm{x}^{\prime} \wedge \mathrm{x}\right) \vee(\mathrm{x} \wedge \mathrm{y} \wedge \mathrm{x}) & (\text { by lemma 1.6 a }, \mathrm{b}) \\
& =\quad\left(\mathrm{x}^{\prime} \vee \mathrm{y}\right) \wedge \mathrm{x} & (\text { by def 1.1) }
\end{array}
$$

$$
\text { similarly } x \vee y=\left(x^{\prime} \wedge y\right) \vee x
$$

Corollary 2.4: For any $x, y \in A$, the elements $x, x^{\prime} v y$ commute.
That is, \quad (i) $x \wedge\left(x^{\prime} \vee y\right)=\left(x^{\prime} \vee y\right) \wedge x$

$$
\text { (ii) } x \vee\left(x^{\prime} \wedge y\right)=\left(x^{\prime} \wedge y\right) \vee x
$$

Corollary 2.5: Every C-algebra satisfies.

$$
x \wedge\left(x^{\prime} \vee x\right)=\left(x^{\prime} \vee x\right) \wedge x=x \vee\left(x^{\prime} \wedge x\right)=\left(x^{\prime} \wedge x\right) \vee x=x
$$

Note 2.6: If A has an element a with the property $a^{\prime}=$ a then it is unique and is denoted by U.

Theorem: 2.7. B is the only C -algebra of order two.
Proof: Let A be a C-algebra of order two. Let $A=\{x, y\}$
If $x^{\prime}=x$ then $y^{\prime}=y$ (by definition of C-algebra) which is not true (See 2.6)
Therefore $x^{\prime}=y, A=\left\{x, x^{\prime}\right\}$. Since $x \vee x^{\prime}=x^{\prime} v x$ (by 1.6 (a))
We get $x \vee y=y \vee x$ for all $x, y \in A$ Thus A is a Boolean algebra of order 2
Hence B is the only C -algebra of order two
Theorem: 2.8. every C-algebra satisfies

$$
(x \vee y) \wedge x \quad=\quad x \vee(y \wedge x)
$$

3. C-ALGEBRA AS A POSET

In this section we define a partial ordering " \leq " on C-algebra A and study the properties of the C -algebra as a poset. We prove that the centre $\mathrm{B}(\mathrm{A})$ of a C algebra A becomes a Boolean algebra under this partial ordering. We derive a number of necessary and sufficient conditions for a C -algebra $\left\langle\mathrm{A}, \vee, \wedge^{\prime}\right\rangle$ to become a Boolean algebra.

Definition: 3.1 Let A be a C-algebra. Define ' \leq ' on A by $\mathrm{x} \leq \mathrm{y}$ if $\mathrm{y} \wedge \mathrm{x}=\mathrm{x}$ then ' \leq ' is a partial ordering on C .

It is enough to verify that ' \leq ' is antisymmetric, remaining proof is a routine verification. Suppose that $\mathrm{x}, \mathrm{y} \in \mathrm{A}, \mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{x}$

$$
\{y \wedge x=x, x \wedge y=y
$$

Now $\quad x \vee y=x \vee(x \wedge y)=x$

$$
y \vee x=y \vee(y \wedge x)=y
$$

So that $\quad x=y \wedge x=(y \vee x) \wedge(x \vee y)=(x \vee y) \wedge(y \vee x)=x \wedge y=y$

Hence ' \leq ' is antisymmetric
Note 3.2: If a C -algebra A has T . Then T is the greatest element of the poset $(\mathrm{A} \leq)$ since $\mathrm{T} \wedge \mathrm{x}=\mathrm{x}$ for all $\mathrm{x} \in \mathrm{A}$ (that is $\mathrm{x} \leq \mathrm{T}$ for all $\mathrm{x} \in \mathrm{A}$).

Example 3.3: The Hasse diagram of the poset (C, \leq) is
Example 3.4: We know that $\mathrm{C} x \mathrm{C}$ is a C - algebra under point wise operations. The Hasse diagram of the poset ($\mathrm{Cx} \mathrm{C}, \leq$) is given below
$C \times C a_{1}=(T, T), a_{2}=(T, F), a_{3}=(T, U), a_{4}=(F, T), a_{5}=(F F)$, $\mathrm{a}_{6}=(\mathrm{F}, \mathrm{U}), \mathrm{a}_{7}=(\mathrm{U}, \mathrm{T}) \mathrm{a}_{8}=(\mathrm{UF}), \mathrm{a}_{9}=(\mathrm{U}, \mathrm{U})$

Note 3.5 : The above two examples suggest that, in general, if A is a Calgebra then (A, \leq) is a join semi lattice. We do not know yet whether (A, \leq) is a join semi lattice. But we have the following.

Theorem: 3.6 In the poset (A, \leq), for any $\mathrm{x} \in \mathrm{A}$
Supremum of $\left\{x, x^{\prime}\right\}=x \vee x^{\prime}$, infimum of $\left\{x, x^{\prime}\right\}=x \wedge x^{\prime}$
Proof: $\left(x \vee x^{\prime}\right) \wedge x=x$ and $\left(x \vee x^{\prime}\right) \wedge x^{\prime}=x^{\prime}$ by cor. 2.5
Therefore $\mathrm{x} \leq \mathrm{x} \vee \mathrm{x}^{\prime}$ and $\mathrm{x}^{\prime} \leq \mathrm{x} \vee \mathrm{x}^{\prime}$
Hence $x \vee x^{\prime}$ is an upper bound of $\left\{x, x^{\prime}\right\}$
Suppose t is an upper bound of $\left\{x, x^{\prime}\right\}$.
We have $\mathrm{t} \wedge \mathrm{x}=\mathrm{x} . \mathrm{t} \wedge \mathrm{x}^{\prime}=\mathrm{x}^{\prime}$
Now $t \wedge\left(x \vee x^{\prime}\right)=(t \wedge x) \vee\left(t \wedge x^{\prime}\right)=x \vee x^{\prime}$
Therefore $x \vee x^{\prime}$ is least upper bound of $\left\{x, x^{\prime}\right\}$, That is, supremum of $\left\{x, x^{\prime}\right\}=x \vee x^{\prime}$. Similarly, infimum of $\left\{x, x^{\prime}\right\}=x \wedge x^{\prime}$
Corollary: 3.7 In a C-algebra $x \vee x^{\prime}=x^{\prime} \vee x$ and $x \wedge x^{\prime}=x^{\prime} \wedge x$
In general for a C - algebra A with $T . x \vee y$ need not be the lub of $\{x, y\}$ in (A, \leq) for example, in $\mathrm{C}, \mathrm{U} \vee \mathrm{F}=\mathrm{U}$ is not the lub of U and F , However we have the following results.

Theorem 3.8: Let A be $a C$ - algebra with T and $x, y \in A$. If $x \in B(A)$ and $x \wedge y$
$=y \wedge x$ then $\sup \{x, y\}=x \vee y$
Proof: Let $x \wedge y=y \wedge x$ and $x \vee x^{\prime}=T$

$$
\left.\begin{array}{rl}
(x \vee y) \wedge x & =(x \wedge x) \vee\left(x^{\prime} \wedge y \wedge x\right) \\
& =x \vee\left(x \wedge\left(x^{\prime} \wedge y\right)\right)
\end{array}\right)=x
$$

Therefore $\mathrm{x} \leq \mathrm{x} \vee \mathrm{y}$

$$
\begin{aligned}
(x \vee y) \wedge y & =(x \wedge y) \vee\left(x^{\prime} \wedge y \wedge y\right)=(x \wedge y) \vee\left(x^{\prime} \wedge y\right)=\left(x \vee x^{\prime}\right) \wedge y \\
& =T \wedge y=y
\end{aligned}
$$

Therefore $\mathrm{y} \leq \mathrm{x} \vee \mathrm{y}$.
Hence $x \vee y$ is an upper bound of $\{x, y\}$
Suppose u is an upper bound of $\{x, y\}$. Then $u \wedge x=x$ and $u \wedge y=y$

Now $u \wedge(x \vee y)=(u \wedge x) \vee(u \wedge y)=x \vee y$
Therefore $x \vee y \leq u$, Hence $\sup \{x y\}=x \vee y$.
Theorem 3.9: Let $x, y \in A$ and $x \wedge y=y \wedge x$ then $\inf \{x, y)=x \wedge y$
Proof: \quad Let $x, y \in A$ and $x \wedge y=y \wedge x$. Clearly, $x \wedge y \leq x$

$$
y \wedge(x \wedge y)=y \wedge(y \wedge x)=y \wedge x=x \wedge y
$$

Hence $x \wedge y \leq y$. Therefore $x \wedge y$ is a lower bound of $\{x, y\}$
Suppose l is a lower bound of $\{\mathrm{x}, \mathrm{y}\}$
$\mathrm{x} \wedge l=l=\mathrm{y} \wedge l$. Now $(\mathrm{x} \wedge \mathrm{y}) \wedge l=\mathrm{x} \wedge(\mathrm{y} \wedge l)=\mathrm{x} \wedge l=l$
Therefore $l \leq \mathrm{x} \wedge \mathrm{y}$ and hence $\mathrm{x} \wedge \mathrm{y}$ is the greatest lower bound of $\{\mathrm{x}, \mathrm{y}\}$
Corollary 3.10: Let A be with $T, x \in B(A), y \in A$ such that $x \wedge y=y \wedge x$ then $x \vee y$ is the lub of $\{x, y\}$ and $x \wedge y$ is the $g l b$ of $\{x, y\}$

Thus we have proved the following
Theorem 3.11: Let A be a C-algebra with T. Then the centre B (A) of A (def 1.12) is a Boolean algebra under the partial ordering ' \leq ' induced fromA.

Now we give the following equivalent conditions for " $\mathrm{x} \leq \mathrm{y}$ "
Theorem: 3.12: In a C-algebra
(i) $x \leq y \Leftrightarrow y \wedge\left(y^{\prime} \vee x\right)=x \Leftrightarrow\left(y^{\prime} \vee x\right) \wedge y=x$
(ii) $x \leq y \Rightarrow y \vee x=y$

Proof: (i) is clear from 2.3 and 2.4
(ii) $x \leq y \Rightarrow y \wedge x=x \Rightarrow y \vee(y \wedge x)=y \vee x \Rightarrow y=y \vee x$

The converse of 3.12 (ii) is not true, for example, in ' $\mathrm{C}^{\prime}, \mathrm{U}_{\mathrm{v}} \mathrm{F}=\mathrm{U}$ but $\mathrm{F} \not \leq \mathrm{U}$
Theorem 3.13. In the poset (A, \leq)

1. $x \vee y \leq x \vee x^{\prime}$
2. if $x \leq y$ then, for any $z \in A$, (i) $z \wedge x \leq z \wedge y$ (ii) $z \vee x \leq z \vee y$
3. $x \wedge y \leq x$
4. if A is a C-algebra with T and $x \in B$ (A) then $y \leq x \vee y$

Proof: 1. $\left(x \vee x^{\prime}\right) \wedge(x \vee y)=(x \wedge(x \vee y)) \vee\left(x^{\prime} \wedge(x \vee y)\right)$

$$
=x \vee\left(x^{\prime} \wedge y\right)=x \vee y \text { therefore } x \vee y \leq x \vee x^{\prime}
$$

2. Suppose $x \leq y$, and $z \in A$.

$$
\text { (i) } \begin{aligned}
(\mathrm{z} \wedge \mathrm{y}) \wedge(\mathrm{z} \wedge \mathrm{x}) & =(\mathrm{z} \wedge \mathrm{y} \wedge \mathrm{z}) \wedge \mathrm{x}=\mathrm{z} \wedge \mathrm{y} \wedge \mathrm{x}(\text { By } 1.6) \\
& =\mathrm{z} \wedge \mathrm{x} \quad \text { (since } \mathrm{y} \wedge \mathrm{x}=\mathrm{x})
\end{aligned}
$$

Therefore $\mathrm{z} \wedge \mathrm{x} \leq \mathrm{z} \wedge \mathrm{y}$
(ii) is a direct verification
3. $x \wedge(x \wedge y)=(x \wedge x) \wedge y=x \wedge y$. Therefore $x \wedge y \leq x$.
4. Suppose A is C-algebra with T and $x \in B(A)$. Then

$$
\begin{aligned}
&(x \vee y) \wedge y=(x \wedge y) \vee\left(x^{\prime} \wedge y \wedge y\right)=(x \wedge y) \vee\left(x^{\prime} \wedge y\right) \\
&=\left(x \vee x^{\prime}\right) \wedge y=T \wedge y=y
\end{aligned}
$$

Therefore $\mathrm{y} \leq \mathrm{x} \vee \mathrm{y}$.

Note 3.14

(i) In the above, $x \vee y \leq y \vee y^{\prime}$ not hold; for example $T \vee U \not \subset U \vee U^{\prime}$ in C.
(ii) In the above, $x \leq x \vee y$ not hold; for example $F \not \leq F_{v} U$ in C.

Now we prove modular type results in the following
Lemma: 3.15: In the poset (A, \leq)

$$
x \leq y \Rightarrow x \vee(y \wedge z)=y \wedge(x \vee z)
$$

Proof: Suppose $x \leq y \Rightarrow y \wedge x=x$

$$
\mathrm{y} \wedge(\mathrm{x} \vee \mathrm{z})=(\mathrm{y} \wedge \mathrm{x}) \vee(\mathrm{y} \wedge \mathrm{z})=\mathrm{x} \vee(\mathrm{y} \wedge \mathrm{z}) .
$$

Theorem 3.16: For any $x, y, z, \in A$
$x \leq y, x \vee z=y \vee z$ and $x \wedge z=y \wedge z$ then $x=y$
Proof: $x=x \vee(x \wedge z)=x \vee(y \wedge z)$

$$
=\mathrm{y} \wedge(\mathrm{x} \vee \mathrm{z}) \quad(\text { By above Lemma 3.15) }
$$

$$
=y \wedge(y \vee z)=y
$$

If $x \in B(A)$ then we have proved (3.12) that $y \leq x \vee y$ and if $x \in B(A), x \wedge y=$ $y \wedge x$ then $x \vee y$ is $\sup \{x, y\}$ (3.8). In general $x \vee y$ need not be an upper bound of $\{\mathrm{x}, \mathrm{y}\}$ in the poset (A, \leq). If $\mathrm{x} \vee \mathrm{y}$ is an upper bound of $\{\mathrm{x}, \mathrm{y}\}$ in (A, \leq) then A becomes a Boolean algebra. Also it can be observed that, for $x, y \in A x \wedge y \leq x$ is true But $x \wedge y \leq y$ need not hold in A. If $x \wedge y \leq y$ for all $x, y \in A$ then A becomes a Boolean algebra. We conclude this paper with the following.

Theorem: 3.17: The following are equivalent in a C -algebra A
(1) $\left\langle\mathrm{A}, \vee, \wedge,{ }^{\prime}>\right.$ is a Boolean algebra
(2) $y \leq x \vee y$ in $(A, \leq) \quad$ for all $x, y \in A$
(3) $\mathrm{x} \leq \mathrm{x} \vee \mathrm{y}$ in $(\mathrm{A}, \leq) \quad$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}$
(4) $x \vee y$ is an upper bound of $\{x, y\}$ in $(A, \leq) \quad$ for all $x, y \in A$
(5) $\operatorname{Sup}\{x, y\}=x \vee y$ in $(A, \leq) \quad$ for all $x, y \in A$
(6) $\mathrm{x} \wedge \mathrm{y} \leq \mathrm{y}$ in $(\mathrm{A}, \leq) \quad$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}$
(7) $x \wedge y$ is a lower bound of $x, y \quad$ for all $x, y \in A$
(8) $\inf \{x, y\}=x \wedge y$ in $(A, \leq) \quad$ for all $x, y \in A$
(9) The poset (A, \leq) is directed below
(10) $x \vee x^{\prime}$ is the greatest element in the poset (A, \leq) for all $x \in A$
(11) For any $x, y \in A$, if $y^{\prime} \leq x^{\prime}$ then $x \leq y$

Proof: $(1) \Rightarrow(2)$ is clear
(2) \Rightarrow (3): Assume (2), Therefore $(x \vee y) \wedge y=y$ for all $x, y \in A$
$(x \vee y) \wedge(y \vee x)=(x \vee(y \vee x)) \wedge(y \vee x)(B y 1.6 b)=y \vee x$
Similarly $(y \vee x) \wedge(x \vee y)=x \vee y$
Therefore $x \vee y=y \vee x$, for all $x, y \in A$
Hence by (2) $\mathrm{x} \leq \mathrm{y} \vee \mathrm{x}=\mathrm{x} \vee \mathrm{y}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}$
(3) \Rightarrow (4): Assume, (3) we have $(x \vee y) \wedge x=x$, for all $x, y \in A$

$$
\begin{aligned}
& \Rightarrow x \vee(y \wedge x)=x \text { for all } x, y \in A . \text { By (2.8) } \\
& \begin{aligned}
(x \wedge y) \vee(y \wedge x) & =(x \wedge y) \vee(y \wedge(x \wedge y))(b y 1.6 b) \\
& =x \wedge y
\end{aligned}
\end{aligned}
$$

Similarly, $(y \wedge x) \vee(x \wedge y)=y \wedge x$
Therefore $x \wedge y=y \wedge x$ for all $x, y \in A$
Therefore $x \vee y=y \vee x$ for all $x, y \in A$
Now $(x \vee y) \wedge y=(y \vee x) \wedge y=y$, that is $y \leq x \vee y$.
$x \vee y$ is upper bound of $\{x, y\}$ for all x, y
(4) \Rightarrow (5): Assume (4). Suppose u is upper bound of $\{x, y\}$, $u \wedge x=x, u \wedge y=y$ now $u \wedge(x \vee y)=(u \wedge x) \vee(u \wedge y)=x \vee y$

Therefore, $\sup \{\mathrm{x}, \mathrm{y}\}=\mathrm{x} \vee \mathrm{y}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}$
(5) \Rightarrow (6): Assume (5). Then, $x \vee y=y \vee x$ for all $x, y \in A$
so that $x \wedge y=y \wedge x$ for all $x, y \in A$
Now $y \wedge(x \wedge y)=y \wedge(y \wedge x)=y \wedge x=x \wedge y$ Therefore $x \wedge y \leq y$
(6) $\Rightarrow(7)$: Assume (6). we know that $x \wedge y \leq x$.

Therefore $x \wedge y$ is lower bound of $\{x, y\}$, for all $x, y \in A$
$(7) \Rightarrow(8)$: Assume (7). suppose t is lower bound of $\{x, y\}$

$$
x \wedge t=t=y \wedge t, \operatorname{Now}(x \wedge y) \wedge t=x \wedge(y \wedge t)=x \wedge t=t
$$

Therefore $\mathrm{x} \wedge \mathrm{y}$ is greatest lower bound of $\{\mathrm{x}, \mathrm{y}\}$
(8) \Rightarrow (1): Assume (8). Therefore $\mathrm{x} \wedge \mathrm{y}=\mathrm{y} \wedge \mathrm{x}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}$

Hence, by thereon 1.11, A is Boolean algebra
Therefore (1) to (8) are equivalent
Clearly (9), (10), (11) are equivalent to (1) by theorem 1.11.
Hence the theorem.
Acknowledgement: The authors thank prof. U.M. Swamy for his support and
guidance in the preparation of this paper.

REFERENCES

[1] Berman, J., "Free spectra of 3-element algebras in Universal Algebra and Lattice Theory" (edited by Freese, R and Garcia, O) Springer Lecture Notes in Mathematics 1004, 1983.
[2] Guzman, F and Squier, C, "The algebra of conditional logic, Algebra" Universalis 27, 88-110 (1990), New York 1952.
[3] Kleene S. C, "Introduction to metamathematics" Van Nostrand, New York 1952.
[4] Mc. Carthy. J., "Predicate calculus with undefined as a thruth value", Stanford Artificial Intelligence Project Memo 1 (1963).
[5] Stainley B. and Sankappanavar H. P., "A course in universal algebra", springer verlag, 1981.
[6] U. M. Swamy, G. C. Rao, and RVG Ravi Kumar: "centre of C-algebra", South East Asian Bullitan of Mathematics (2003) 27 : 357-368.
[7] Swamy U. M, Murty G.S:, "Boolean Centre of a universal algebra", Algebra Universals, 13-202-205, (1981).

Dr. Sushil Kumar Agarwal

Associate Professor,
Department of Mathematics, Govt. College, Malpura, Tonk, Rajasthan,
E-Mail: skaggarwal.govtcollege@gmail.com

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.
http://www.win2pdf.com/purchase/

