
International Journal of Mathematical Sciences
Vol. 17, Nos. 1-2, January-June 2018, pp. 35-48

© Serials Publications

AN ANALYTICAL APPROACH OF THREE DIMENSIONAL
STRATIFIED LAMINAR GAS-LIQUID TWO PHASE PIPE

FLOW MODELS

A. K. Borah & A. N. Dev

Abstract: In this paper an analytical model is obtained for stratified laminar gas liquid
two-phase flow in pipes with different pressure drops in each phase, and compared with
both the one-dimensional cross sectional average model and experiment. The present model
is based on the modification of Ranger’s and David model to use the bipolar coordinate for
stratified laminar flow analyses. Experimental confirmation has been conducted in air-
water flow with two different tube sizes (I.D 1.5 and 2 (cm)). The liquid level and void
fraction were measured by ultrasonic pulse echo and capacitance transducer techniques.
Pressure drop of each phase is also measured. The results show: (a) the friction factor
decreases with increasing liquid phase Reynolds numbers with power law factor of ...
1.32, and no tube size effect is observed with gas flow rate is zero, (b) the present three
dimensional theory predicts larger void fraction than that of the one-dimension cross
sectional averaged model for lower superficial gas and liquid velocities and agree well
experiments; (c) the present three dimension theory agree well with experiments for the
prediction of the phase pressure drop in the gas phase. However, for the liquid phase, only
qualitative behaviour with order of magnitude agreement is obtained.

Keywords: Two-phase stratified laminar flow, LAMNAR2, fluid-fluid interface, volume
flow ratio, stratified laminar flow without gas flow, bipolar coordinates.

1. INTRODUCTION

Two-phase stratified laminar motion has been observed in a variety of situations most
notably in pipeline transport. However, there is some confusion as to the transition criterion
for laminar to turbulent stratified flow. The authors [1-3] have demonstrated that the
Reynolds number, based on superficial velocity, should be less than 1000. Spriggs [4]
considered analyzing the two-phase situations using Hack’s criteria [5] and found a poor
correlation between theoretical and experiments results. Spriggs demonstrated this was
due to stabilizing force in one phase which act to dissipate disturbances in the other before
they grow into turbulent patches. In general, it has been assumed that, as with single-phase
flow, transition to turbulent occurs when the Reynolds number exceeds about 2000. This
paper is concerned with an exact description of stratified laminar flows. The procedure
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flowed will be extend the method of Ranger and David [6] assuming that there is a different
pressure drop in each phase. An analytical solution is presented.

2. TWO PHASE LAMINAR VELOCITY PROFILES

The pressure driven laminar flow of two stratified incompressible Newtonian fluids, 1 and 2
in a pipe of circular cross section as in Fig. (1). The fluid-fluid interface is smooth and
horizontal subtending an angle of 2� at the axis of the pipe. Now, Cartesian coordinates are

Figure 1: Fluid Configuration in Two-Phase Stratified Smooth Flow

chosen so that OZ along the axis of the pipe (parallel to the direction of the fluid flow), OX
lies on the interface between the two liquids and OY passes through the axis of the pipe.
The coordinates are then non-dimensionalized by the pipe radius R such that

X = xR, Y = yR (1)

where x and y represents the dimensionless Cartesian coordinate system. On the other
hand, for the steady laminar motion of each phase, j with fluid flow in the z direction only,
the Navier Stokes equation becomes

2 2 2 2

2 2
( 1, 2)j j

j jjj

R dP R
u G j

dzx y

� �� � � �� � � � �� � � �� �� � � �� �
(2)
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The boundary conditions that we apply to uj are listed in Table 1. Eq. (2) Poisson’s
equation, may be transformed into Laplace’s equation through the introduction of the reduced
velocity uj

* as

2
2 2 *1

[ ( cos ) 1] ( 1, 2)
4 jjj j

j

R
u G x y u j

� �� � � � � � � �� �� � �
(3)

Substitution of this expression for uj into Eq.(2) we obtain

2
*

2 2

2
0 ( 1, 2)j

j

u j
x y

� �� �
� � �� �

� �� �
(4)

In order to simplify application of the boundary conditions bipolar coordinates (�, �)
are introduced and the coordinate transformation can be obtained

Table 1

Boundary Condition on for Two-Phase Stratified Laminar – Laminar flow

Boundary conditions Explanation

[a] ( ) 0 ( 1, 2)ju R j� � no slip condition at the wall

[b] 0 at 0 ( 1, )2ju
x j

x

�
� � �

�
symmetry

[c] 1 2
1 2 at 0

u u
x

x x

� �
� � � �

� �
continuity of shear stress at the fluid-fluid interface.

[d] 1 2 at 0y� � �� no slip condition at fluid-fluid interface.

Table 2
Boundary Condition on for Two-Phase Stratified Laminar – Laminar Flow

Boundary conditions Explanation

[a]
*
1
*
2

at

at

� � � � �

� � � � � � �
no slip condition at the wall

[b]
*

0 at 0 ( 1, )2ju
j

x

�
� � � �

�
symmetry

[c] 1 2
1 2 at

u u� �
� � � � � �

�� ��
continuity of shear stress at the fluid-fluid interface

[d] 1 2 at� � � � � � no slip condition at fluid-fluid interface.

[e] finite ( 1, )2jLim u j
� ��

� � reasonable physical condition
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Again we obtain

sin sin

cosh cos
x

� �
�

� � �
(5)

sin sin

cosh cos
y

� �
�

� � �
(6)

x z� (7)

In Fig. (2) a diagram showing bipolar coordinates. By comparison of Fig. 1 and Fig. 2
it can be seen in the fluid 1 occupies the region – � < � < �*, � < � < � and fluid 2 occupies

Figure 2: The Bipolar Coordinate System

the region – � < � < �, � � � � ± �, Laplace’s. equation is invariant under the above the
transformation, hence the reduced velocities satisfy

2 2
*

2 2
0 ( 1, 2)ju j

� �� �
� � �� �

�� ��� �
(8)

with the boundary condition listed in Table 2.
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Applying separability to Eq. (8) leads to the following expressions

* ( ) ( ) ( 1, 2)j j Ju E N j� � � � (9)

2
2

2
0, ( 1, 2)j j

d
E k E j

d
� � �

�
(10)

2
2

2
0, ( 1, 2)j j

d
E k N j

d
� � �

�
(11)

where k represents the separation constant. Solving Eq. (10)-(11) we obtain representation
of uj

*

* [ cos ( ) sinh ( )] ( 1, 2)j ju C k k j� � � � � � � � (12)

Now C, � and � represents the constant of integration. Boundary conditions 1 and 2
may be satisfied by choosing �1 = 0, �1 = � and �2 = � + �. Boundary condition 5 is
automatically satisfied by the structure of the equation. Since any value of the separation
constant will satisfy the above mentioned boundary conditions, k must be represented as a
continuous valued function and so the reduced velocities may be represented as

*
1 1

0

( ) sinh ( ) cosu C k k k dk
�

� � � � �� (13)

*
2 2

0

( ) sinh ( ) cosu C k k k dk
�

� � � � � � �� (14)

substituting Eqs. (5)-(6) into Eq. (3) the velocity profile for each phase may be represented
as

2
*

1 1 1
1

sin sin ( )
2(cosh cos )

R
u G u

� �� � � �
� �� �
� � � �� �

(15)

2
*

2 2 2
2

sin sin ( )
2(cosh cos )

R
G u

� �� � � �
� �� �
� � � �� �

(16)

Furthermore, the constants Cj are determined by imposing the remaining boundary
conditions on the system and from boundary condition 3

1 2
0 0

sin cos
cosh ( ) cos cosh cos (1 )

2(cosh 1)
u C k k k dk C k k dk
� � � �

��� � �� � � � ��
��� � (17)
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where � = G1/Gg, the ratio of the pressure drops in each phase. From the integrations, we
obtain from Eq. (17)

1 2
sin cos

cosh ( ) cosh (1 )
sinh

C k C k
k

� �
� � � � � � � ��

�
(18)

Similarly, by applying boundary condition 4 to the system we obtain as

2

1 2 2 1 2 1
sin

sinh ( ) sinh ( )
sinh
k

C k C k
k
�

� � � � � � � � � � � � ��
�

(19)

solving Eqs. (18)-(19), Cj may be expressed as a function of k

2
2 1 1

1
2 1

2( ) sin cosh (1 ) sinh sin 2
( ) [sinh ( 2 ) sinh ] sinh

k k k
C

k k k
� � � �� � � � � � � � �

�
� � � � � � � � � �

(20)

� �
� �

1
2

2 1

2
2 1

2 1

(1 ) 1 sinh cosh ( )
[sinh cosh ] 2 ( ) [sinh ( 2 ) sinh ]

2 sin cosh ( )

[sinh ( 2 ) sinh ] sinh

k k
C

k k k k

k k

k k k

� ��� � � � � �
� �� �� � � � � � � � � � � �� �

� ��� � ���
�
� � �� � � � � � � �

(21)

where

2 1

2 1

� � �
� �

� � �
(22)

3. DETERMINATION OF VOLUME FLOW RATES

The fluid 2 has been considered

2
2 2A

Q u dA� � � (23)

In case of bipolar coordinates an elemental area may be expressed as

2

2

sin

(cosh cos )
dA d d

�
� � �

� � �
(24)

2 2 *2
2 2 2

2 0

sin sin ( )
2 sin

2(cosh cos ) (cosh cos )

G d d
Q R u

� ���

�

� �� � � � � �
� � �� �

� � � � � � �� �
� � (25)

The first term in the integrand is considered; the transformation � = � + � is applied
and with the integration over � is



An Analytical Approach of Three Dimensional Stratified Laminar Gas-Liquid... 41

2

2 3
0 0 0

sin sin ( ) sin sin ( ) ( 3 cot 3cot )
22(cosh cos ) 2sin

d d d
� � �� � �� � � �� �� � �� �

� � � �
� � � �� � � (26)

Eq. (26) is integrated � term-by-term which gives

3
2 3 2

3 4 5

4 3
0

1
cot cot

sin cos 3cos 3 cos 2sincos sin
3 1 cos4 sin sin sin
4 4sin sin

�
� ��� �� �� �� �� �� �� � � � � � �� �� �� � � � � �� �

� �� � �� �� �� � � �� �� �� �� �� �

(27)

Now, the final expression for the first term in the volume flow rate integral is

2

2
2

2 1
sin 2 sin 4

8 3 12
R

G
� �� � � � �� �� � �

(28)

The second term in the volume flow rate integral is now considered

*
2 2 2

0 0 0

sinh ( ) cos

(cosh cos )

k k
u dA C dk d d

� ��� � ��� �

� �

� � � � � �
� � �

� � �� � � � � (29)

The transformation � = � + � is applied. The integral over � is obtained as

� �2 2
0 0

2
2 3

0 0

sinh ( ) cos

cosh cos

cosh sinh cos
sinh ( )

sinh sin sin

k k
C dk d d

C k k k
k dk d

k

� � �

�

� �

� �� �
� �

� � �

� � �� �� � � �� � �� �
� � �� �

� � �

� � (30)

The term to be integrated over � is manipulated into the following form

2 3
0

2 3
0

cosh sinh cos
sinh ( )

sin sin

[sinh sinh ( 2 )] [cosh cosh ( 2 )]
cos

sin sin

k k
k d

k k k k
k d

�

�

� � �� �� �� � �� �
� �� �

� � � � � � � � � �� �� � � �� �
� �� �

�

� (31)

This may be integrated by inspection

2 2
0

1 cosh cosh ( 2 )
2 cot sinh

2 sin sin

k k
k k

�
� � � �� �� � � �� �� �� �

(32)

Finally Eq. (24) may be written as

* 22
2

0 0

( cosh cot sinh )
2 sinh

C
u dA k k k k dk

k

� ��� �

�

�
� � � � �

�� � � (33)
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Combining Eqs. (21), (28) and (33), the volume flow rate of fluid 2 may be expressed
as

1

2 10

2
2

2
2 0

2
2

2

(1 ) ( , ) (1 )
sin2 sin 2

2 cosh ( )

( , ) sinh cosh ( )
sin

( , ) cosh

2 1
sin2 sin 4

8 3 12

k
dk

k

R G k k k
Q dk

k k

R G

�

�

� ��� � � � � �
� � �� �� � � � � �� �

� �� � � � � � �� �� � �� �
� � � � �� �

� �� �� �� � � � � �� ��� �� �� �

�

� (34)

Where

2

2

sin cosh cos sinh
( , )

sin

k k k k
k

k

� � � � �
� � �

�
(35)

and

( , , ) sinh ( 2 ) sinhk k k� � � � � � � � � � (36)

If we assumed that the pressure drops are the same in each phase � � 1, Ranger and
Davis’ original expression [6] is obtained and if we consider that liquid 2 occupies the
entire pipe, � � �, and for Pouseullie flow results gives

2

2 2
28

R
Q G

�
�

�
. (37)

4. STRATIFIED LAMINAR FLOW WITHOUT GAS FLOW

We are mainly concerned with only one fluid (liquid flow) and the velocity distribution of
the liquid phase as a function of void fraction and imposed pressure drop is obtained

2

0

sin sin( )
sinh ( ) cos ( )

2(cosh cos )
GR

u C k k dk
�� �� � � �� �� � � � � � � �� �

� � � �� �� �
� (38)

Now, the constants � and � are set to � + � and 0 respectively to satisfy boundary
conditions 1 and 2 in Table (3). Furthermore, boundary condition 4 is automatically satisfied
by the structure of the above equation. The constant C is determined by application of
boundary condition 3 gives

sin cos

sinh cosh
C

k k

� �
� �

� �
(39)
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The volume flow rate is obtained

2

2
2

0

1 2 1
sin 2 sin 4

8 3 12

( sin cosh cos sinh )
sin cos

sin cosh

GR
Q

k k k k
dk

k k

�

� �� �� � � � �� �� �� �� ��
� �� � � � � �
� � � �� �

� �� �� �
�

(40)

Eq. (40) also illustrates an important aspect relating to the pressure drop. For single
phase Poiseuille flow the pressure drop varies linearly with the flow rate and indicates that
, again , the pressure drop varies linearly with the flow rate. If is assumed that the Blasius
equation, with C1 = 16 and X1  = 1.0 applies then the terms in the square brackets of
Eq. (40) must always be equal to a simple geometric expressions. This is clearly not the
case thus, for stratified laminar flow without gas flow, the constant which appear in the
Blasius equation are expected to be different from the Poiseuille flow situation.

The reason for the above is intuitively obvious. The void fraction is dependent on the
volume flow rate in the pipe and thus the term in the square brackets in Eq. (40) is dependent
on the volume flow rate of the liquid.

Table 3

Boundary Conditions on u for Two–Phase Stratified Laminar Flow without Gas Flow

Boundary conditions Explanation

[1] * atu � � � � � � no slip condition at the wall

[2] 0 at 0
u

x

�
� � �

�
symmetry

[3] 0 at
u�

� � � �
��

continuity of shear stress at the fluid-fluid interface

[4] lim finiteu
� ��

� reasonable physical condition

5. CLOSURE OF THE VOLUME FLOW RATE EQUATIONS

The equations of concern are evaluated in computer code LAMNAR2. Fig. (3) shows a
flow diagram for LAMNAR2. The structure of the equations makes it easiest to follow the
route of assuming a void fraction and a gas flow rate and then determining the required
liquid flow rate to maintain these imposed conditions. In addition, Eq. (34) may be separated
into two parts, the geometrical and physical dependent terms and the pressure drop dependent
terms. The first of these are evaluated numerically, given the required information and
stored then, a gas flow is assumed and the equations evaluated, for each pre-set void fraction,
using experimentally determined Blasius constants. The correct value for the liquid volume
flow rate is determined iteratively.



44 A. K. Borah and A. N. Dev

Figure 3: Flow Chart for Routine LAMNAR2
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6. EXPERIMENTAL APPARATUS

The lucite tubes of inner diameters 2.0 and 1.50 cm are used as shown in Fig. (4). Water
taken from the laboratory supply was introduced as one end of the pipe. The water exits
from the other end of the pipe at atmospherics conditions and is calculated in a weighing
tank for flow rate measurement. Liquid film measurements are made using an ultrasonic
pulse echo method (Cheng et al., [7]).

Figure 4: Schematic Experimental Apparatus for Two-Phase Stratified Flows

7. EXPERIMENTAL RESULTS

Fig.(5) represents a log-log plot of the experimentally deduced friction factor vs. Reynolds
number for stratified single-phase flow of water (zero gas flow) in pipes of inner diameters
12.0 and 1.5 cm. The pressure drop is assumed to be solely due to wall shear. From this
figure the Blasius constants are determined as

24.0 1.0 and 1.06,
lx

l l
l l l

l

D u
C X f C

�� �� �� �� � � � �� �� ��� �� �

The above results are used to determine the pressure drop and void fraction for stratified
two-phase laminar-laminar flow are demonstrated. Moreover, Fig. (6) depicts a comparison
of void fraction prediction for the one-dimensional model of Lightstone and Cheng [8] and
the present three dimensional model for an air-water system. On the other hand, for low
liquid flow rates the three dimensional model predicts higher void fraction in agreement
with experiment (as shown isolated points on Fig. (6)).
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Figure 5: Friction Fraction versus Reynolds Number for Two-Phase Stratified Flows

Figure 6: Comparison of Present Theory with 1-D Theory for Prediction of
Void Fraction in Laminar-Laminar Flow
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Table 4, compares the observed and predicted pressure drop for the two phases. Now
experimental errors are quite large however, the experimental results indicate order of
magnitude values. It is clear that the theory’s ability to predict liquid pressure drop is quite
poor. For low liquid flow rates, very high pressure drops are predicted with pressure drop
decreasing with increasing liquid flow rate. Although this trends reverses for higher liquid
flow rates, it contradicts the experimentally observed behaviour in the region tested.

Table 4
Comparision of Observed Pressure Drop, G, with the Three-Dimensional Theory

for Stratified Laminar-Laminar Flow

u
gs

u
1s

G
1

G
g

G
1

G
g

(cm/s) (cm/s) (Pa/m) (Pa/m)

10.6 1.4 4±5 0.2±1 40.5 0.18
10.6 3.7 6±5 0.4±1 5.7 1.4

10.6 5.9 7±5 0.7±1 5.1 3.6
21.2 1.4 4±5 0.5±1 45.7 0.35

21.2 3.7 6±5 0.9±1 9.2 0.83
21.2 5.9 8±5 1.4±1 7.0 2.9

53.1 3.76 6±5 1.9±1 18.0 1.5
53.1 5.9 7±5 2.8±1 12.0 2.5

However, when considering the pressure drop in the gas phase the experiment and the
theory agree quite well. The obvious explanation for the behaviour observed is the method
used to predict pressure drop. The results indicate that the one-dimensional pressure drop
simplification undermines the work done in determining the volume flow rates.

8. DISCUSSION AND FURTHER RESEARCH

From the right point of view further research work should concentrate on improved methods
for analytical determination of the pressure drops in each phase.
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