
International Journal of Control Theory and Applications31

A Comprehensive Study of Map Reduce Frequent Itemset Mining:
A Survey

Palvi Rania and Ishan Ranjanb

a,bDept. of Computer Science and Engineering, Sharda University, Greater Noida-201308, India. Email: bishan.ranjan@sharda.ac.in

Abstract: Frequent Itemset Mining is the most popular and interesting technique to extract knowledge from commercial
applications. Rapid increase in data has made a challenge to find legitimate information from massive amount of
data. However, traditional frequent itemset mining techniques are not adequate to handle large dataset. MapReduce
framework provides parallel computation approach for storing and analysing large dataset on commodity clusters in
cloud computing. A number of FIM techniques based on MapReduce have been developed in recent researches. A
critical review of these techniques required to develop an efficient FIM algorithm. In this paper, we have described
various features and characteristics of FIM. We have also described the efforts and techniques to mine Frequent
Itemsets on MapReduce in Big data. Further, the challenging issues and some open problems in the area have been
discussed.
Keywords: Frequent Itemset Mining, Big Data, Association Rule Mining, Cloud Computing, MapReduce.

Introduction1.	
Frequent Itemset Mining used for generating Association rules in the process of knowledge discovery. In other
words, it’s a process to extract knowledge from frequently occurring events. In 1993, Agrawal et. al. [1] has
introduced the concept of Association rule mining for finding the relationship among different data itemsets in
the given records. In 1994, they have developed a classic algorithm named Apriori Algorithm [2]. FIM is the
necessary effort in the process of developing association rules. “Market Basket Analysis” accepted as modelling
technique of Association Rule Mining. Along with market studies ARM also found in areas like Decision Support,
GPS, social networking, Web Search Engines, telecommunication, alarm prediction etc. Tremendous amount
of literature is available for progress and enhancements in the techniques.

From last few decades, development in information technology produces abundant amount of data. Social
Networking, blogs, e-commerce applications etc. are major producers of data over the internet. Organizations
continually absorb the data for better decision making. According to estimation by IBM, everyday almost 2500
trillion KB of data created and maximum data available in the world generated in just two years [3]. Cloud
Computing’s Mass storage and distributed computing architecture proficient to process the massive amount

International Journal of Control Theory and Applications

ISSN : 0974-5572

„ International Science Press

Volume 9  •  Number 46  •  2016

Palvi Rani and Ishan Ranjan

International Journal of Control Theory and Applications 32

of data efficiently and effectively. Now, Massive amount of data over the internet introduces a term Big Data.
Volume, velocity and variety are three major characteristic of Big Data. According to Gartner,

“Big data is high-volume, high-velocity and high-variety information assets that demand
cost-effective, innovative forms of information processing for enhanced insight and decision
making.”	 (“Gartner IT Glossary, n.d.”)

MapReduce Architecture provides a sophisticated programming model for Cloud Computing framework.
Now days, MapReduce introduced as a very dominant architecture in distributed computing with a simplified
solution to handle large data set. MapReduce framework was first introduced by Google [4] in 2004 and Hadoop
is the implementation of MapReduce framework simplifies distributed programming. Hadoop is reliable and
scalable open source software for distributed computing. Parallel data mining techniques using MapReduce
are popular since 2005. To improve the performance issues of MapReduce researchers introduced different
frameworks. NIMBLE [5] designed a better parallel programming paradigm for data mining. TWISTER [6] has
improved the performance of MapReduce by reducing the cycles. These frameworks are not widely used due to
the unavailability of these frameworks.

This paper presents the performance comparative study of MapReduce based Frequent Itemset Algorithms.
Sections are organized in following way: Section 1 detailed introduction, Section 2 describes Related Work.
In Section 3, parallel and distributed algorithms have been discussed. In section 4, we have discussed major
challenging issues and open problems.

Related Work2.	

2.1.	 Problem Definition
Given I = {I1, I2, I3, …, In} represents a finite set of items. And transaction database D over set of items X Õ I. A
transaction can be represented as T = {tid, X}. The vertical database D’ composed of items and set of transactions
contains those items over D. Mathematically,

	 D¢ = {(Ij, Cij = {tid | Ij ŒX, (tid, X) ŒD})}

Here, Cij cover of Ij. The support of an Itemset Y in transaction database D given a number of transactions
contains that itemset. Formally,

	 Support (Y) =	{tid | Y Õ X, (tid, Y) ŒD}

	 Support (Y) =	 «
Œ

C
Y

i
i

j

j

∩

In other words, occurrence probability of an itemset in transactional database D is called support. Confidence
in transaction database D is the percentage of X over Y i.e. if transaction contains X itemset then it contains
Y also. Confidence can also called as conditional probability that transaction contain Y if contains X. It is
represented as X fi Y. Formally,

	

Intuitively, itemsets with support greater than threshold s are said to be frequent. It has a monotonic property
based on the principal that if itemset is not frequent than none of its superset will be frequent. Frequent Itemset
Mining often presented as collection of if-then association rules. Association rule is formulated as X Æ Y, if X
appears in a transaction Y likely to appear. Association rules are categorized under four main categories: Boolean
Association rules, Quantitative Association Rules, Multidimensional and Multilevel Association Rules [7].

A Comprehensive Study of Map Reduce Frequent Itemset Mining: A Survey

International Journal of Control Theory and Applications33

Figure 1: Transaction Database, Frequent Itemsets and Association Rules

2.2.	 Association Rule Mining
All ARM algorithms discussed here are composed of following characteristics:

Design Approach: Most algorithms use bottom-up approach for candidate generation. Frequent Itemsets
are extended step by step with iteration. Some have proposed top-down and hybrid approaches. In top-down
approach, un-necessary pattern generation can be avoided. For long frequent Itemsets, top-down approach might
be preferred.

Candidate Generation: FIM algorithms require to generate candidate set to mine frequent subsets. Complete
Candidate Generation, a preeminent approach generates all candidates for next step frequent subset. Sometimes,
heuristic approaches are preferred for fast processing.

Layout: Two types of layouts are mainly used in FIM: Horizontal and Vertical. Horizontal layout stores
transaction ids along with the items of the transaction. As compared, Vertical layout stores the itemset along
with the transaction id containing the item.

Interestingness Measure: There are two Interestingness measures to evaluate the of association rules. Descriptive
measure takes independency between itemsets. Most algorithms are based on descriptive measures; rules defined
are simple and easy to use. Probabilistic measure considers the indetermination of confidence and imposes
minimum threshold on it. Probabilistic approach requires prior statistical knowledge to design rules.

Database: In Database, data can be categorized under certain and uncertain. Certain database includes
transactional, unstructured and semi-structured data. Uncertain database includes data like GPS, Whether etc.
In uncertain database, Regressions, Poisson distribution etc. techniques are applied to mine frequent itemsets.
As here, strong emphasis imposed on certain database, Literature not given much attention to Uncertain FIM
algorithms.

Frequent Itemsets: FIM distinguishes frequent Itemsets depend on the completeness of patterns. In recent
years, research have been dedicated to user-friendly concepts of Maximal frequent, closed frequent, Constrained
frequent, Near-Match frequent, and top-k frequent Itemsets [7] are various kinds of frequent Itemsets generated
by FIM algorithms.

Palvi Rani and Ishan Ranjan

International Journal of Control Theory and Applications 34

2.2.1.	 ARM Algorithms
Apriori [2] is a traditional algorithm uses horizontal database for candidate generation. It uses BFS property
to compute the support of items. K-length frequent itemset used to compute K + 1 candidate itemset. It starts
with first iteration over D and computes the support. In the next step, frequent items from the iteration are used
to compute candidate itemset of length 2. Minimum support threshold s applied in iteration reduces the search
space. In all iterations, Apriori scans the database to compute support count. The process made the job very time
consuming. AprioriTid [8] algorithm reduces the time of support count calculation by replacing the transaction
Identifier with the items in the transaction. Apriori Hybrid [9] combined approaches of AprioriTid and Apriori
algorithm. Apriori Hybrid uses basic Apriori Algorithm in the initial phase of frequent itemset mining and
AprioriTid in later phase.

SEAR Algorithm [10] modified version of Apriori Algorithm. Same steps of Apriori like candidate
generation and pruning is used for frequent itemset mining. SEAR has modified the data structure of Apriori
from set to prefix tree. Leaf nodes store the candidates for next iteration of frequent itemset mining. Both frequent
itemsets and candidates are stored in prefix-tree. Prefix-tree gives better processing and memory utilization as
compared to set.

The partitioning Algorithm [11] scans the database two times for frequent Itemsets. I first phase, it divide
the database in multiple partitions without overlapping and find their frequent itemsets locally. In second phase,
it finds the frequent itemsets from whole database based on support. Combined results give the frequent itemsets
and reduce the search space.

SPEAR Algorithm [12] is combined approach of SEAR and Partitioning Algorithm. It scans the database
two times. Firstly, it scans the database and generates global frequent items. Then database is partitioned
without overlapping. Each partition generates frequent itemsets using SEAR. SPEAR computes the total
frequent itemsets by counting the SEAR’s active candidates. SPINC [10] is a modified version of SPEAR, use
incremental partitioned approach. Here, incremental means partitions not compute the results by own but share
the intermediate results to reduce the duplicate computation overhead.

Dynamic Itemset counting algorithm [13], DHP [14] and Perfect DHP [15] are Apriori based algorithms.
DIC generates the candidate Itemset dynamically as transaction read and DHP is heuristic based algorithm. It
performs Hashing to filter out the unnecessary itemsets and generating candidate itemsets for next phase. Perfect
DHP reduces the size of the database that not contains frequent itemset. DHP is a very efficient technique for
generating large itemsets. DHP is effective as it not only reduce the itemsets in transaction but also the number
of transactions from the database.

IHP [16], unlike DHP Transaction Identifiers (Tid) of transaction contains the item to be hashed in Hash
Table named Transaction Hash Table (THT). Firstly, transactions are hashed in the database. Secondly, THT
generated between hash and Itemsets. The count of the item against that hash in database stored. 1-Itemsets are
generated by pruning the infrequent Itemsets whose total count is less than threshold. THT of frequent 1-Itemset
can be used recursively to find frequent k-Itemsets.

Dynamic Programming Algorithm [17] improves the performance of Apriori for frequent candidate itemset
for 1-itemset and 2-itemset. Dynamic Programming reduces the redundancy and save the previous results. Special
data structures are used for efficient storage.

Eclat [18] uses vertical database for fast computation and DFS in the prefix tree to find the frequent itemset
candidates. Comparing with Apriori, Eclat iterates the complete database only once to compute the support
of items. A prefix tree is generated; depth first search applied at each step for candidate generation. Frequent
itemsets are prefix for candidate generation in tree.

A Comprehensive Study of Map Reduce Frequent Itemset Mining: A Survey

International Journal of Control Theory and Applications35

FP-Growth [19] is a famous tree association Mining Algorithm. It scans the database two times. Firstly, find
the support of the items in database. Secondly, arranges the items in Frequent Itemset header table in decreasing
order based on their support. Frequent Itemset header table contains two fields, item and node. Node-link points
to the first node of FP- Tree. Depth first strategy reduces the search space in FP-Growth and gives better memory
utilization.

FIUT [20] algorithm enhances the FP-Growth algorithm using special frequent itemset Ultrametric tree (FUIT)
structure for mining frequent Itemsets. Low I/O communication, improved dataset partitioning, compressed storage
and avoid recursive traversing are major four advantages of FUIT. Compressed Storage achieved by avoiding
conditional pattern base. Frequent Itemsets are generated from leaf nodes without traversing tree recursively.
Transaction clustering is done improve the database partitioning and substantially reduces the search space.​

Table 1
Algorithm characteristics of traditional FIM techniques

K-size of longest frequent Itemset

S.No. Approach Database Layout Database Structure Number of Database Scans
1 Apriori Horizontal Hash Tree K
2 Apriori Tid Horizontal Hash Tree K
3 Apriori Hybrid Horizontal Hash Tree K
4 SEAR Horizontal Prefix Tree K
5 DIC Horizontal Hash Tree <=K
6 DHP Horizontal Hash Tree K
7 IHP Horizontal Hash Tree K
8 Dynamic Programming Horizontal None K
9 Eclat Vertical Hash Tree >3
10 FP Growth Vertical Prefix Tree 2
11 Partition Vertical None 2
12 SPEAR Horizontal Prefix Tree 2
13 SPINC Horizontal Prefix Tree 2
14 H-Mine Horizontal Linked List 2
15 Context Based Horizontal None K
16 Pre-Post Vertical N-List 2
17 FIN Vertical Node Set 2
18 GUHA Horizontal Statistical 2
19 CARMA Vertical None K
20 PPV Vertical Node-List K
21 FIUT Vertical Ultrametric Tree 2
22 CBAR Horizontal None 1 + Contrast with Cluster

Partial Table

H-Mine Algorithm [21] a scalable for frequent itemset mining for data set fit into memory. Give high
performance when combined with FP Growth for large dataset. Linked Queue data structure is used to maintain
the links. Header table in H-Mine store item, support and link where link addresses to the linked queue.

Context based Association Mining Algorithm [22] is based on the context variable. It is based on the
theory association between objects can be different based the context; context can be any state, entity or event.
Contextual situation generates positive and negative associations.

Palvi Rani and Ishan Ranjan

International Journal of Control Theory and Applications 36

Figure 2: (a) Apriori Scan- Requires 2 scans to find the frequent Itemset of Size of 2. (b) DHP algorithm generates a
Hash Table; support is applied on the bucket size. Here, if threshold is 2 then 0, 1, 4 and 5 buckets will automatically
discarded during next scanning. (c) FP- Growth sorted the items in transaction and generate FP-Tree (d) Pre-Post’s

first scans is similar to FP-Growth and first scanning, generates PPC tree to create a N-List Data Structure

PrePost Algorithm [23] and PPV fast Vertical Data Mining Method [24] are based on PPC tree. PrePost
employs N-List data structure while PPV is based on Node-List. In PPC-tree each node stores Item Count, Pre-
Order and Post-Order and. PrePost algorithm requires two database scans to construct PPC-tree and generate
N-List. Apriori or any other algorithm can be used for K-frequent Itemset based on N-List. FIN [25] employs
vertical database with NodeSet data structure. NodeSet use Pre-Order to construct the tree. PrePost and PPV
used PPC encoding which made mining process very time-consuming. In Contrast to both, FIN save almost
half of the memory uses.

GUHA Method [26] combines logical and statistical approaches to mine frequent itemsets. It uses 4ft-
Miner Procedure for mine the patterns. CARMA [27] is an Online Association Mining technique to compute
long frequent itemsets. The algorithm maintains set of large itemsets with corresponding support. It provides
the feature to change the threshold at any time during first scan.

CBAR [28] cluster based association mining algorithm for discover large frequent Itemsets. It require
only single database scan followed by contrasts between partial cluster tables. Database scan generate frequent
1-Itemsets and cluster the database by decreasing lengths. Cluster-Table (k) store the transaction of length k.
Frequent Itemset of length k can be finding with the reference to Cluster-Table (k). CBAR not only increasing
the efficiency of mining but also ensures correctness of results.

PCAR [29] Pruning Classification Association Mining Algorithm combines minimum frequency of items
with minimum frequency of Itemsets. Firstly, infrequent items deleted from the database based on the min-
support. Then, frequent items are combined to generate frequent Itemsets of length k.

Comparison of above discussed techniques is given in Table 1.

2.2.2.	 Parallel and Distributed Association Rule Mining
Many researchers have contributed towards parallelization of Association Rule Mining in large databases.
Parallelization of tasks becomes necessity to deal with huge databases. Shared and Distributed memory architectures

A Comprehensive Study of Map Reduce Frequent Itemset Mining: A Survey

International Journal of Control Theory and Applications37

are emerged. Shared memory systems allow multiple programs to simultaneously access the same memory. In
Distributed memory architecture, memory not shared among processors and they only share data among each
other. Each processor has access to its own memory. Because of the scalability of distributed systems, they are
becoming more common and easy to use. MPI, most common programming model for distributed computing.
But, its efficiency can be observed only on low level programming languages i.e. C and FORTRAN.

MapReduce has simplified distributed processing. Recent research in distributed computing has taken
MapReduce as parallel programming paradigm. MapReduce provides high tolerance, good scalability and
availability.

Various parallel and distributed techniques in ARM are discussed below:

Count Distribution is parallelization of Apriori Algorithm. In CD [30], transactions are distributed among
local processors. Each processor scans the local database and a hash tree build from all candidate itemsets. In each
local partition, processor calculates the support of candidate Itemsets and share among all the remote processors
for global support count. Once the global frequent Itemsets have been determined; next candidate itemsets are
generated locally each iteration. CD not able to parallelize the computation because each it communicates with
remote processors to find the global frequent Itemsets. Large number of Itemsets and processors are major
drawbacks of CD. As in case of large number large Itemsets fails to store the hash tree in memory and if processors
becomes large communication between other processors will also increase.

Fast Distribution [31] based on Count Distribution reduces the number of candidates in Hash tree. The
itemsets which are not frequent locally are removed from the hash tree. It reduces the communication between
processors. Each site requests count for candidates assigned to it. Remote site share their local support count
and broadcasts the global support count.

Data Distribution [30] overcomes the memory problem of CD by generating disjoint candidate Itemsets at
each processor. However, complete database scan is required in all iterations to determine the global support.
Data Distribution resolves the memory problem of CD but increases communication overhead in all iterations
and comparatively poor than CD.

Candidate Distribution [30] distributes the disjoint candidate itemsets and transactions between processors.
Heuristic Distribution is done in such a way that no synchronization and in between communication is required
between processors to find frequent itemsets. Algorithm divides lk - 1 frequent itemsets among partitions to
determine lk candidate itemsets in heuristically defined pass l.

Table 2
Characteristic approach of various Parallel and Distributed frequent Itemset Mining Techniques

S. No Algorithm Characteristics
1 Count Distribution Apriori Based
2 Fast Distribution CD- based reduces candidates by removing local infrequent itemsets
3 Data Distribution Candidate Itemset Partitioning; Scan complete database in all iteration
4 PEAR Parallel SEAR used candidate prefix tree
5 PPAR Parallel Partition based algorithm
6 IDD Ring based broadcast and Candidate Itemset Partitioning
7 Candidate distribution Heuristically distributes candidates and database among processors
8 Hybrid Distribution Combine CD and DD
9 NPA All processors stores the copy of candidate Itemsets similar to CD

Palvi Rani and Ishan Ranjan

International Journal of Control Theory and Applications 38

S. No Algorithm Characteristics
10 SPA Candidate itemset partitioning; similar to DD
11 HPA Candidate Itemset partitioned based on hash function
12 F-FPDM Parallel FP-Growth based on FP-forest data structure
13 MLFPT Multiple frequent pattern trees generated on distributed environment locally
14 ODAM Apriori Based Parallel algorithm with elimination of infrequent 1-itemsets
15 PD-CLUB Bit- Map based
16 FP-Growth Heuristic Tree-Partitioning algorithm builds FP-Tree to identify heuristically defined N frequent

items
17 Parallel FP-Growth FP-Growth Based Algorithm
18 APM All processors generate itemsets dynamically and independent support count
19 Clustering FIM Both Sequential and parallel Itemset Mining
20 IMRApriori Eliminate partial infrequent Itemsets from Apriori (MapReduce)
21 BigFIM MapReduce Apriori
22 MRApriori MapReduce Apriori
23 BPFP MapReduce based FP-Growth with load balancing
24 SPC K-frequent itemsets generated in k passes (MapReduce)
25 FPC Based on support candidates from different fixed consecutive database passes are combined
26 DPC Candidates are dynamically combined depend on work load
27 R-Apriori Uses Spark architecture to reduce I/O bottlenecks
28 RFP-Growth FP-Growth based algorithm eliminates the intra-property frequent itemsets
29 CARM HD-Mine and FD-Mine based
30 SEARUM A cloud based service based on PFP-Growth algorithm
31 FiDoop Modified the data structure of FP-Growth from FP-Tree to FP-Ultrametric Tree for better

performance
32 FiDoop-HD FiDoop with multiple cache files depend on itemset length

PEAR algorithm [32] based on the parallelization of SEAR algorithm generates candidate prefix tree. Each
processor generates local support counts. Global support count is determined after combining local support
counts. Infrequent itemsets are eliminated and process continues.

Intelligent Data Distribution [33] overcomes the problems of Data Distribution. In IDD, ring based broadcast
of local databases is done. IDD algorithm suffers from the problem of high communication and comparatively
smaller number of candidates.

Hybrid Distribution [33] addresses the above mentioned problems by combining the Count Distribution
and Intelligent Data Distribution. HD algorithm partitions the candidate into large sections and a number of
processors are assigned to each section.

NPA and SPA algorithms proposed in [34] are similar to CD and DD respectively. HPA is similar to IDD
to reduce the computation of DD but the approach taken has been different.

F-FPDM [35] algorithm uses FP-forest data structure. Algorithm is based on parallelization of FP-Growth
algorithm using depth first search strategy. Databases are divided to processors by core processor. Each processor
creates FP-Forest on portion of the database. Core processor performs the synchronization and merging of
FP-Forests of all other processor nodes. Tree of FP-Forest is dynamically assigned to processor nodes as a
sub- task.

A Comprehensive Study of Map Reduce Frequent Itemset Mining: A Survey

International Journal of Control Theory and Applications39

MLFPT (Multiple Local Frequent Pattern Tree) algorithm [36] has taken FP-Growth as base algorithm
requires only two full database scans. No candidate itemsets are generated. Workload is equally distributed
among all processors. Firstly, parallel frequent pattern trees are generated. After only, actual mining is done for
these data structures.

ODAM (Optimized Data Association Mining) [37] has taken Parallel Apriori as base algorithm. Algorithm
starts with eliminating the 1-infrequent itemsets from the database partition and store in main memory. The idea
behind is to reduce the transaction size and find the identical transactions. Also, initial dataset contains both
frequent and infrequent datasets and size is too large to store in memory. Finally, it moves all main memory
partition to temporary file and continues the process for all partitions.

PD-CLUB [38] is a parallel bitmap-based algorithm to find frequent itemsets by differential mining in
cluster refinement. It creates the database clusters and applies differential techniques to eliminated common
patterns and mines the database.

FP-Growth based Heuristic algorithm [39] a parallel mining technique based on tree-partitioning. One FP-
Tree builds in memory and independent partitions developed in parallel. Load balancing is achieved through
equal partitioning of tree between threads. N frequent items are identified where N is heuristically identified. The
transactions are partitioned and passed to threads. 2N chunks are generated and divided to N-1 threads. Process
is recursively applied to build FP-Growth tree.

Parallel FP Growth [40] generates global FP-Tree from accumulation of local FP-Conditional Patterns
results. Initially, Transactional database is partially divided among all nodes. Nodes share their support count to
create global support count. All nodes creates local conditional pattern base based on F-List. After the generation
of Local Conditional Patterns hash function is used to determine node going to process conditional patterns.

Adaptive parallel mining algorithm [41] proposed for shared memory systems. All the processors generate
itemsets dynamically and support count independent from each other without any synchronization. Adaptive
interval configuration and virtual partition pruning technique reduces the database scanning and number of
candidates.

Clustering based FIM [42] proposed both sequential and parallel Itemset Mining. MapReduce framework is
applied to parallelize the mining. Instead of 1-itemset or k-itemset, representative examples in the cluster can be
used for searching. Firstly, transactions are divided in K-Clusters using K-Medoids algorithm. Two list accepted
and excluded are computed. Itemsets in clusters are sorted by their decreasing lengths and occurrences. Random
representative is chosen form each cluster. If candidate is found frequent in local then itemset will be accepted
otherwise global test is performed check itemset is frequent or not.

IMRApriori (Improved MapReduce Apriori Algorithm) [43] offers better performance by pruning partial
infrequent Itemsets as partial frequent itemsets in large amount can overload the mappers. When few mappers
output an itemset as frequent Itemset called as Partial frequent Itemsets (INS-Itemset). The property of maximum
support count for partial frequent itemset with size Di is (s ¥ Di) - 1 has defined. Reducers of phase 1 apply
the above property to remove INS-Itemsets. There are several approaches on MapReduce Apriori like BigFIM,
MRAprori and MapReduce Apriori [51, 52, 53] are proposed by many researchers to increase the efficiency of
existing Apriori in distributed environment.

BPFP (Balanced Parallel FP- Growth) [44] algorithm parallelize the FP-Growth using MapReduce
approach. BPFP implements load balanced feature to improve the performance of PFP. BPFP generates output
in two steps. First step generates F-List, a key-value pair output of mappers are summed at reducers. Sorted
list of frequent itemsets in descending order is called F-List. Secondly, F-List divided into Q balanced groups

Palvi Rani and Ishan Ranjan

International Journal of Control Theory and Applications 40

again in two sub-steps. To construct conditional pattern base, load calculated based on the amount of work on
FP-Growth. After, calculated load divided among different units. Now, FP-Growth is implemented on group-
dependent transactions.

SPC, FPC and DPC [45] algorithms are based on MapReduce has taken Apriori as base algorithm. SPC
(Single Pass Counting) generates k-frequent Itemsets in k-passes of MapReduce phase. Mappers scan the database
and key-value pairs are generated. Reducers perform candidate generation and support counting functions. FPC
(Fixed Pass Combined-Counting) algorithm combines the candidates from different fixed consecutive database
passes depend on their support counts. DPC (Dynamic Passes Counting) depend on the work load of units
dynamically combines candidates from different successive passes.

R-Apriori [46] MapReduce based algorithm used Spark to overcome I/O bottlenecks in MapReduce. In
phase 1, mappers produce key-value pair output for itemsets. Reducer counts the itemsets and prunes the itemsets
based on their support counts. Bloom filter is used to store support counts of phase 1. Bloom filter provide high
speed compared to hash tree thereby increasing the performance of algorithm.

RFP-Growth [47] and CARM [50] algorithms improves the efficiency of FP-Growth. RFP-Growth
eliminates the intra-property frequent itemsets. Itemsets have same prefix or property are called intra-property
itemsets. Major three phases of algorithm are: pre-processing, FP-Growth and reverse elimination to remove
intra-property frequent itemsets. CARM contains two main algorithms HD-Mine and FD-Mine provides high
workability on cloud computing environment. The mining of conditional FP-Tree done on different nodes based
on availability.

SEARUM [48], a cloud based service for Association Rule Mining in distributed computing. It has
implemented PFP-Growth [] algorithm to uncover frequent itemsets from network traffic data. A series of
MapReduce jobs performed from network data acquisition to association rule aggregation. Each job may receive
the input from one or more preceding jobs.

FiDoop [49], a parallel frequent Itemset Mining on MapReduce Programming Model. FiDoop incorporates
Frequent Itemset Ultrametric tree (FIU-Tree) as it provides better storage, low I/O overhead, recursive traversing
and natural partitioning of data set [52]. Three MapReduce jobs are executed gradually to mine the dataset.
FIU- Tree is generated in first two phases of MapReduce. First phase scans the complete database and creates
frequent 1-Itemsets. In second phase, again database scanning is done to generate frequent k-Itemsets and
construction of k-FIU tree. Third phase, generate short frequent itemsets independent of large frequent Itemsets
on MapReduce.​

FiDoop give high performance on low-dimensional dataset. To efficiently handle high-dimensional dataset
some modifications have been done existing FiDoop called FiDoop-HD. FiDoop-HD stores the second phase
output of MapReduce Job into multiple cache files depending on Itemset lengths. FiDoop-HD proves to better
than FiDoop because of in-built balancing and Itemsets decomposition of previous stages saved in new files.

Challenging Issues3.	
Above discussion reveal that researchers are continuously contributing towards increasing the performance,
availability, parallelization and scalability of frequent Itemset Mining in Big Data. Despite, more attention needs
to be given to the issues related to ease and flexibility. Some of the open issues are discussed below:

Database Scan: Most of the algorithms scans the database number of times to generate frequent Itemsets.
Complete database scanning of exponentially large database not only reduces the performance but also a time
consuming job.

A Comprehensive Study of Map Reduce Frequent Itemset Mining: A Survey

International Journal of Control Theory and Applications41

Dynamic load balancing: All present parallel and distributed algorithms employ static load balancing scheme
with the assumption of data distributed among various node in homogeneous environment. But Cloud Computing
environment encompass heterogeneous data decomposition with transient loads. Hadoop MapReduce also
featured implicit data distribution among nodes. Dynamic load balancing becomes very crucial job in such
environment.

High Dimensionality: All present algorithms preforms well only on few thousand data dimensions or items.
Itemset size implicitly escalates the complexity. Although dimensions of itemsets not directly proportional to
Complexity of the algorithm. But enumeration of maximal Itemset can be the definite solution to the problem.

Data Location: Today geographically dispersed organizations store large amount of data in distributed
environment. Although many researchers proposed different Hadoop MapReduce based algorithms for frequent
Itemset Mining in distributed environment. But performance, cost, reusability and global database pruning are
major issues.

Data Skew: Data skew a major problem in frequent itemset mining has adverse effect on load balancing. In
MapReduce, data implicitly distributed among various mappers for parallel computation. Nodes usually contain
equal sized data blocks. However, frequent itemsets generated by mapper may be highly skewed. Means, some
Mappers may generate large frequent itemsets then other. MapReduce phase cannot obtain result without
completion of Reducers job. Highly skewed mappers may require large computation time. Consequently, it
effects the parallelization and performance.

Interestingness of Pattern and Rule Generation: Current research focuses on the length of frequent itemsets
generated from database. However, the rule generation, usability and interestingness measure of the itemset
equally important for today’s business. On the assumption of few itemsets, rule generation found to be a cheapest
task. But, actual complexity to generate rules is 0(r.2l), where l is the maximum length of itemset and r denotes
the number of frequent itemsets.

Conclusion4.	
Social media, E-Commerce, Internet Banking, GPS, Telecommunication and industry globalization give explosive
growth in data around the world. This huge amount of data introduced as Big Data. Parallelization is required to
analyze and extract information from such a massive amount of data. MapReduce lucrative algorithm as parallel
programming model processes Big Data on large clusters. The emphasis of this paper is to reveal both early and
recent literature on frequent itemset mining techniques. In this paper, we have provided the survey of research in
traditional and advanced frequent itemset mining techniques as well as characteristic measures and comparison
of approaches. Further, some challenging issues and open problems have been discussed.

References
R. Agrawal, T. Imieli´nski, and A. Swami, “Mining association rules between sets of items in large databases,” in SIGMOD [1]	
’93: Proceedings of the 1993 ACM SIGMOD international conference on Management of data. New York, NY, USA:
ACM, pages. 207–216, 1993.

R. Agrawal and R. Srikant. Fast algorithms for Mining Association Rules in large databases. In Proc. VLDB, pages. [2]	
487–499, 1994.

Improving Decision Making in the World of Big Data [3]	 http://www.forbes.com/sites/christopherfrank/2012/03/25/
improvingdecision-making-in-the-world-of-big-data/.

Dean Jeffery, Ghemawat Sanjay, “MapReduce: Simplified Data Processing on Large Clusters”, “Google Publications”, 2004.[4]	

Palvi Rani and Ishan Ranjan

International Journal of Control Theory and Applications 42

A. Ghoting, P. Kambadur, E. Pednault, and R. Kannan. NIMBLE: a toolkit for the implementation of parallel data mining [5]	
and machine learning algorithms on mapreduce. In Proc. ACM SIGKDD, pages. 334– 342. ACM, 2011.

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox. Twister: A runtime for iterative MapReduce. [6]	
In Proc. HPDC, pages. 810–818. ACM, 2010.

Han J, Kamber M, Data mining: concepts and techniques, 2nd edn. Morgan Kaufmann, 2006.[7]	

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In J.B. Bocca, M. Jarke, and C. Zaniolo, editors, [8]	
Proceedings 20th International Conference on Very Large Data Bases, pages. 487–499. Morgan Kaufmann, 1994.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery of association rules. In U.M. Fayyad, [9]	
G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages.
307–328. MIT Press, 1996.

Mueller A. Fast sequential and parallel algorithms for association rule mining: A comparison. Technical Report CS-TR-[10]	
3515, Department of Computing Science, University of Maryland, College Park, MD, 1995.

A. Savasere, E. Omiecinski, and S. Navathe, “An Efficient Algorithm for Mining Association Rules in Large Databases”, [11]	
Proc. 21st Very Large Data Bases Conference, 1995.

Mohammed J. Zaki, Rensselaer polytechnic Institute. Association Mining: A Survey. IEEE Concurrency, 1999.[12]	

S. Brin, R. Motwani, J. Ullman, and S. Tsur, “Dynamic Itemset Counting and Implication Rules for Market Basket Data,” [13]	
ACM SIGMOD conference. Management of Data, May 1997.

J.S. Park, M. Chen, and P.S. Yu, “An Effective Hash Based Algorithm for Mining Association Rules”, ACM SIGMOD [14]	
International conference. Management of Data, May 1995.

OZEL, S. A. AND GUVENIR, H. A. An algorithm for mining association rules using perfect hashing and database pruning. [15]	
In 10th Turkish Symposium on Artificial Intelligence and Neural Networks, Gazimagusa, T.R.N.C., A. Acan, I. Aybay,
and M. Salamah, Eds. Springer, Berlin, Germany, pages. 257–264, 2001.

J.D. Holt, S.M. Chung, Mining association rules using inverted hashing and pruning, Information Processing Letter, pages. [16]	
211–220, 2002.

D. Bhalodiya, An efficient way to find frequent pattern with dynamic programming approach, Nirma University conference [17]	
on Engineerin, NUiCONE, pages. 28-30, Nov, 2013.

M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithms for discovery of association rules. Data Min. and [18]	
Knowl. Disc., pages. 343–373, 1997.

J. Han, J. Pei, Y. Yin, R. Mao, Mining frequent patterns without candidate generation: a frequent-pattern tree approach, [19]	
2013 Journal of Data Mining and Knowledge Discovery (8) – 1 53 -87, 2004.

Y.-J. Tsay, T.-J. Hsu, and J.-R. Yu, “FIUT: A new method for mining frequent itemsets,” Inf. Sci., vol. 179, no. 11, pp. [20]	
1724–1737, 2009.

J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, “H-Mine: Fast and Space-Preserving Frequent Pattern Mining in [21]	
Large Databases,” IIE Trans. Inst. of Industrial Engineers, vol. 39, no. 6, pp. 593-605, June 2007.

Shaheen, M; Shahbaz, M; and Guergachi, A; Context Based Positive and Negative Spatio Temporal Association Rule [22]	
Mining, Elsevier Knowledge-Based Systems, pp. 261-273, Jan 2013.

Deng Z., Wang Z., Jiang J.J. (2012). A new algorithm for fast mining frequent itemsets using N-lists. SCIENCE CHINA [23]	
Information Sciences, 55(9), 2008-2030

Deng Z.H., Wang Z.H. A new fast vertical method for mining frequent itemsets. International Journal of Computational [24]	
Intelligence Systems, 3(6), 733-744, 2010.

Deng, Z. H., & Lv, S. Fast mining frequent itemsets using Nodesets. Expert Systems with Applications, 41(10), 4505–4512, [25]	
2014.

A Comprehensive Study of Map Reduce Frequent Itemset Mining: A Survey

International Journal of Control Theory and Applications43

Petr Hajek b,*,2, Martin Holeˇna b,2, Jan Raucha,1,The GUHA method and its meaning for data mining, Journal of Computer [26]	
and System Sciences, 34–48, Elsevier, 2010.

C. Hidber. Online association rule mining. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, Proceedings of [27]	
the 1999 ACM SIGMOD International Conference on Management of Data, volume 28(2) of SIGMOD Record, pages.
145–156. ACM Press, 1999.

Y.J. Tsay, J.Y. Chiang, CBAR: an efficient method for mining association rules, Knowledge-Based Systems 18, 99–105, [28]	
Jan 2013.

Hui Zhan[29]	 g, Qingying Qiu, Zhaoxia Wang, PCAR: An Efficient Approach for Mining Association Rules, Fuzzy Systems
and Knowledge Discovery, pages. 605-609, 2008.

R. Agrawal and J.C. Shafer, Parallel Mining of Association Rules, IEEE Trans. Knowledge and Data Eng., vol. 8, no. 6, [30]	
pages. 962-969, Dec. 1996.

D. Cheung et. al., “A Fast Distributed Algorithm far Mining Association Ruler,” Proc. 4th Int’i Conf. Parallel and Distributed [31]	
Information Systems. IEEE Computer Soc. Pres, LOS Alamitoi, Calif., pages. 31-42, 1996.

MUELLER, A. Fast sequential and parallel algorithms for association rule mining: a comparison. Tech. rep. CS-TR-3515, [32]	
Department of Computer Science, University of MaryLand, College Park, MD, 1995.

E.H. Han. G. Karypir,andV. Kumar, “Scalable Parallel Data Mining for Association Rules.” Proc. ACM Conf. Management [33]	
of Data, ACM Pres, New York, pp. 277-288, 1997.

T. Shintani and M. Kitsuregawa, ªHash Based Parallel Algorithms for Mining Association Rules,º Proc. Conf. Paralellel [34]	
and Distributed Information Systems, 1996.

E. Han, G. Karypis, V. Kumar. Scalable Parallel Data Mining for Association Rules. In TKDE 12(2), 2000.[35]	

Osmar R. Za¨ıane, Mohammad El-Hajj, and Paul Lu. Fast parallel association rule mining without candidacy generation. [36]	
In ICDM, 2001.

Sujni Paul, (2010) “An Optimized Distributed Association rule mining algorithm in Parallel and distributed data mining [37]	
with XML data for improved response time”, International Journal of Computer Science and Information Technology,
Volume 2, Number 2, April 2010.

J. Li, Y. Liu, W.-k. Liao, and A. Choudhary. Parallel data mining algorithms for association rules and clustering. In Intl. [38]	
Conf. on Management of Data, 2008.

D. Chen, C. Lai, W. Hu, W.G. Chen, Y. Zhang, and W. Zheng, “Tree Partition Based Parallel Frequent Pattern Mining on [39]	
Shared Memory Systems,” Proc. IEEE Parallel and Distributed Processing Symposium, 2006.

Iko Pramudiono and Masaru Kitsuregawa. Parallel FP-Growth on PC cluster. In PAKDD, 2003.[40]	

Kan, D. C., “An Adaptive Algorithm for Mining Association Rules on Shared Memory Parallel Machines”, Distributed and [41]	
Parallel Databases, Vol. 9, pages. 99– 132, 2001.

M. Malek and H. Kadima. Searching frequent itemsets by clustering data: Towards a parallel approach using mapreduce. [42]	
In Proc. WISE 2011 and 2012 Workshops, pages. 251–258. Springer Berlin Heidelberg, 2013.

Farzanyar, Z., & Cercone, N. (2013, August). Efficient Mining of Frequent itemsets in Social Network Data based on [43]	
MapReduce Framework. In Proceedings of the 2013 International Conference on Advances in Social Networks Analysis
and Mining (ASONAM), pages. 1183-1188, 2013.

L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang, and S. Feng. Balanced parallel FP-Growth with MapReduce. In Proc. YC-[44]	
ICT, pages. 243–246, 2010.

M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh. Apriori-based frequent itemset mining algorithms on MapReduce. In Proc. ICUIMC, [45]	
pages. 26–30. ACM, 2012.

Palvi Rani and Ishan Ranjan

International Journal of Control Theory and Applications 44

Rathee, S., Kaul, M., Kashyap, A.: R-Apriori: an efficient apriori based algorithm on spark. In: PIKM’15, Melbourne, VIC, [46]	
Australia. ACM, 2015.

Li, X. An algorithm for mining frequent itemsets from library big data. Journal of Software, 9(9), 2361–2365, 2014[47]	

D. Apiletti, E. Baralis, T. Cerquitelli, S. Chiusano and L. Grimaudo, “SEARUM: a cloud-based SErvice for Association RUle [48]	
Mining [J]”, 2013 12th Ieee International Conference on Trust, Security and Privacy in Computing and Communications
(Trustcom 2013), IEEE, pages.1283-90, 2013.

Xun, Y., Zhang, J., Qin, X. FiDoop: Parallel Mining of Frequent Itemsets Using MapReduce. IEEE Transactions on Systems, [49]	
Man, and Cybernetics: Systems, 2015.

S. Natarajan, S Sehar, A Noval Algorithm for Distributed Data Mining in HDFS, “ICoAC”,pp. 93-99, 2013.[50]	

S. Moens, E. Aksehirli and B. Goethals, “Frequent Itemset Mining for Big Data,” in Proceedings IEEE International [51]	
Conference on Big Data, pages. 111–118, 2013.

A. Pradeepa, and A. S. Thanamani, PARALLELIZED COMPRISING FOR APRIORI ALGORITHM USING MAPREDUCE [52]	
FRAMEWORK, International Journal of Advanced Research in Computer and Communication Engineering, vol. 2(11),
pages. 4365-4368, 2013.

O. Yaha, O. Hegazy and E. Ezat, “An Efficient Implementation of Apriori Algorithm Based on HadoopMapreduce Model,” [53]	
in International Journal of Reviews in Computing, vol. 12, pages. 59–67, 2012.

Margaret H. Dunham and Yongqiao Xiao, Southern Methodist University, Dallas, Texas and Le Gruenwald, Zahid Hossain, [54]	
University of Oklahoma, Norman UK, “ A survey of Association Rules”

Thabet Slimani,” Efficient Analysis of Pattern and Association Rule Mining Approaches “IJITCS Vol. 6, No. 3, February [55]	
2014.

J.S. Park, M. Chen, P.S. Yu, An effective hash-based algorithm for mining association rules, in: ACM SIGMOD, 1995.[56]	

D. Cheung and Y. Xiaa, “Effect af Data Skewness in Parallel Mining of Association Rules,” Proc. ParifirAsIa Conf. [57]	
Knowledge Dismvery and Data Mining. Lecture Notes in Computer Science, Vol. 1394, Springer- Verlag. New York.
1998, pages. 48-60.

Agarwal R, Imielinski. T., Swami, Database Mining: a performance prospective, IEEE Transaction on Knowledge and Data [58]	
Engineering 5(6), pages. 914-925, 1993.

Yanbin Y[59]	 e ; Acxiom Corp., Little Rock, AR ; Chia-Chu Chiang, “A Parallel Apriori Algorithm for Frequent Itemsets
Mining”, Software Engineering Research, Management and Applications, pages. 87 – 94, 2006.

B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Effective personalization based on association rule discovery from web [60]	
usage data. In Proc. WIDM, pages. 9–15. ACM, 2001.

E. Ozkural, B. Ucar, and C. Aykanat. Parallel frequent item set mining with selective item replication. IEEE Trans. Parallel [61]	
Distrib. Syst., pages. 1632–1640, 2011.

