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1. INTRODUCTION

Real options have been attracting an increasing attention in economic theory; see, for instance:
Beck and Stockman (2005) studying money as a real option, Strobel (2005) examining monetary
integration and infletion preferences through real options, Henderson and Hobson (2002)
analyzing real options with constant relative risk aversion, and Foote and Folta (2002) dealing
with temporary labor as a real option, among others. The main issue associated with real options
is how to value a non-traded contingent claim1. In this paper, we are mainly concerned with
valuing the real option of waiting when consumption can be delayed for a representative,
competitive, and risk-averse consumer living in a small open monetary economy, and subject
to a cash-in-advance contraintof the Clower type.

This paper develops a stochastic economy that explicitly recognizes the role of extreme or
exceptional movements in the dynamics of the nominal exchange rate. It is assumed that the
exchange-rate dynamics follows a mixed diffusion-jump process where the expected size of an
upward jump is supposed to have an extreme value distribution of the Fréchet type. In this case,
the underlying non-traded asset is the price of money in terms of goods. Using this stochastic
setting and assuming identical rational consumers with logarithmic preferences, the price of
such a real option is characterized as the solution of a (partial) differential-integral equation
with boundary conditions. In Fact, we provide an analytical solution of the value of such a real
option. Finally, several Monte Carlo simulation experiments are carried out to get numerical
approximations of the real option price.

The paper is organized as follows. In the next section, we work out a one-good, cash-
inadvance, stochastic economy where agents have expectations of the exchange-rate dynamics
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driven by a mixed diffusion-jump process and the expected size of a possible exchange-rate
depreciation is supposed to have an extreme value distribution. Through section 3, we undertake
the consumer’s decision problem. In section 4, we deal with valuing the real option of delaying
consumption. In section 5, we provide numerical approximations of the real option price. Finally,
in section 6, we present conclusions, acknowledge limitations, and make suggestions for further
research.

2. STRUCTURE OF THE MODEL

Let us consider a small open monetary economy populated by infinitely lived identical households
in a world with a single consumption good internationally tradable. The main assumptions on
the economy resemble those from Venegas-Martínez (2001), (2006a) and (2006b), and they
will be described in what follows.

2.1 Purchasing Power Parity and Exchange Rate Dynamics

We assume that the consumption good is freely traded, and its domestic price level, P
t
, is

determined by the purchasing power parity condition, namely,

P
t
 = P*

t
 e

t
, (1)

where P*
t
 is the foreign-currency price of the good in the rest of world, and e

t
 is the nominal

exchange rate. Throughout the paper, we will assume, for convenience, that P*
t
 is equal to 1. We

also suppose that the exchange-rate initial value, e
0
, is known and equal to 1.

In what follows, we will suppose that the ongoing uncertainty in the dynamics of the expected
exchange rate, and therefore in the integration rate, is generated by a geometric Brownian
motion combined with a Poisson process where the size of a forward jump is driven by extreme
value distributions of the Fréchet type, that is,

t t
t t

t t

de dP
dt dW Z dN

e P
� � � � � � , (2)

where ��� IR, � > 0, (W
t
)

t � 0
 is a Brownian motion defined on a fixed probability space (�, �, IP

W
),

and dN
t
 is a Poisson process with intensity parameter �. From now on, it will be supposed that

Cov
 
(dW

t
, dN

t
) = 0. It is easy to incorporate downward jumps by adding a second Poisson

process in (2) multiplied by a Weibull distribution. However, for the sake of simplicity we keep
the analysis only for upward jumps (cf. Venegas-Martínez (2006c)). The size of an upward
jumps is defined by

Z =
1

1 X���
–1, X > 0, � > 0,

X =
Y � �
�

, �, � > 0,

where Y is a Fréchet random variable with parameters �, � and � > 0. Clearly, the quantity Z
remains positive. The cumulative distribution function of Y is given by:
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F
Y
 (y)  = 

0, ,

exp , ,

y

y y
��

� ��
�

� �� � �� �� � � ��� �� �� � ��� �� ��

(3)

and the corresponding density satisfies:

f
Y 
(y)  = 

(1 )

( ) ,Y
y

F y y
� � �� � �� � � �� �� �� �

. (4)

On the other hand, since the number of expected upward jumps in the exchange-rate, per
unit of time, follows a Poisson process dN

t
 with intensity �, we have that

IP
N 

{one unit jump during dt} = IP
N
 {dN

t
 = 1} = �dt

and

IP
N
 {more than one unit jump during dt} = IP

N
 {dN

t
 > 1} = o

 
(dt),

so that

IP
N
 {no jump during dt} = 1 – �dt + o

 
(dt),

where o
 
(dt) / dt � 0 as dt � 0.

2.2 A Cash-in-Advance Constraint

Consider a cash-in-advance constraint of the Clower type:

�
 
m

t
 = c

t
, (5)

where m
t
 is the demand for real cash balances, c

t
 is the demand for consumption, and �–1 > 0 is

the time that money must be held to in order to finance consumption. The constant � applies
uniformly at all time t. Condition (5) is critical in linking the exchangerate dynamics with
consumption.

2.3 The return rates of non-traded and traded assets

Let S
t
 = 1/P

t
 the price of money in terms of goods, a non-traded asset, and V = V

 
(St, t) the price

of a European call option on S
t
, a non-traded contingent claim. Suppose also that there is a real

bond of price b
t
 that pays a constant real interest rate r (i.e., it pays r units of the consumption

good per unit of time). Thus, the consumer’s real wealth, x
t
, is given by

x
t
 = S

t
 + V

 
(S

t
, t) + b

t
, (6)

where x
0
 is exogenously determined. The stochastic rate of return of S

t
, dR

S
, is obtained by

applying Itô’s lemma to the inverse of the price level, with (2) as the underlying process, that is,

1

t

d
P

� �
� �
� �

 =
��� � � �� � � � � � � �

� � � � � � � �� �� �� � � � � �
� �� � � � � � � �� �

2 2
2 3 2

1 2 11 1 1
2t t t t t

t t t t t

X
P P dt P dW dN

P P P P P

= 21
[( ) ]t t

t

dt dW X dN
P

��� � � � � � � . (7)
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Hence, the stochastic rate of return of S
t
 is given by

dR
S
 = (�2 – �)

 
dt – ��dW

t
 – X –� dN

t
. (8)

Observe now that the stochastic rate of return of S
t
, dR

S
 = dS

t
 / S

t
, can be rewritten as2

dR
S
 = �dt + �dW

t
 + �dN

t
, (9)

where � = �2 – � and � = –
 
X –��. If V = V

 
(S

t
, t) denotes the value of the option, then Itô’s lemma

leads to

dV =
2

2 2
2

1
2t t t t

t tt

V V V V
S S dt S dW

t S SS

� �� � � �
� � � � � �� �� �� � ��� �

+ [V
 
(S

t 
(� + 1, t) – V

 
(S

t
, t)]

 
dN

t

or

dV = ���V 
dt + ���V 

dW
t
 + ���V 

dN
t
, (10)

where

�
V
 =

2
2 2

2

11
2t t

t t

V V V
S S

t SV S

� �� � �
� � � �� �� �� � �� �

,

�
V
 =

1
t

t

V
S

V S

�
�

�
and

�
V
 =

1
V

[V
 
(S

t 
(� + 1, t) – V

 
(S

t
, t)].

3. THE HOUSE HOLD‘S DECISION PROBLEM

The consumer’s real wealth stochastic accumulation in terms of the portfolio shares, w
1t
 = S

t 
/x

t
,

w
2t
 = V/x

t
, 1 – w

1t
 – w

2t
 = b

t 
/x

t
, and consumption, c

t
, is given by

dx
t
 = x

t 
w

1t 
dR

S
 + x

t 
w

2t 
dR

V
 + x

t 
(1 – w

1t
 – w

2t
)

 
rd

t
 – c

t 
dt,

with x
0
 exogenously determined. In this equation, dR

V
 � dV/V. Thus, by substituting (9) and

(10) in the above expression, the budget constraint can be rewritten as

dx
t
 = x

t 
[(r + (� – r)

 
w

1t
 + (�

V
 – r)

 
w

2t
)

 
dt + (w

1t 
� + w

2t 
�

V
)

 
dWt

+ (w
1t 

� + w
2t 

�
V
)

 
dN

t
], (11)

where

� = �2 – � – � = � – �.

3.1 The Utility Index

The von Neumann-Morgenstern utility at time t = 0, v
0
, of the competitive risk-averse consumer

is assumed to have the time-separable form:

v
0
 = 0 0

log( ) rt
tE c e dt

� �� �
� �� �� (12)
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where E
0
 is the conditional expectation on all available information at t = 0. To avoid unnecessary

complex dynamics in consumption, we assume that the agent’s subjective discount rate is
consistent with the constant real international rate of interest, r. We consider the logarithmic
utility function in order to derive closed-form solutions and make the subsequent analysis more
tractable.

3.2 The First Order Conditions

The Hamilton-Jacobi-Bellman equation for the stochastic optimal control problem of maximizing
utility, with log

 
(c

t
) = log

 
(�

 
x

t 
w

1t
) and subject to (11), is given by

1 2,
max ( ; , )

t t
t t

w w
H w x t  �

1 2,
max

t tw w

�
�
�

1 1 2log( ) ( , ) [ ( ) ( ) ]rt
t t x t t t V tx w e I x t x r r w r w�� � � � � � � �

 + 2 2
1 2

1
( , ) ( , ) ( )

2t t xx t t t t VI x t I x t x w w� � � �

 + 1 2[ ( ( 1), ) ( , )]t t t V tE I x w w t I x t�� � � � � �
�
�
�

 = 0. (13)

The first-order conditions for w
1t
 and w

2t
 are, respectively,

Hw1t
 = 0 and Hw2t

 = 0.

We postulate I
 
(x

t
, t) in a time-separable form as

I
 
(x

t
, t) = e– rt [�

1 
log

 
(x

t
) + �

0
],

where �
0
 and �

1
 are to be determined from (13). By substituting the above candidate in (13), we

obtain

1 2
1 2

,
max ( , ; , )

t t
t t t

w w
H w w x t  �

1 2,
max

t tw w

�
�
�

1 1 1 2 1 0log( ) [ ( ) ( ) ] [ log( ) ]t t t V t tx w r r w r w r x� � � � � � � � � � � � �

 – 2
1 1 2 1 1 2

1
( ) [log( 1)]

2 t t V t t Vw w E w w�� � � � � �� � � � �
�
�
�

 = 0.

If we now compute the first-order conditions, we find that the optimal values of w
1t
 and w

2t

satisfy:

1 2
1 21 1

1
( )

1 t t V
t t Vt

E r w w
w ww �

� �� �
� � � � � � � � �� �� � � �� � �

and

1 2
1 2

( )
1

V
V t t V V

t t V

E r w w
w w�

� �� �
� � � � � � � �� �� � � �� �

.

So far we have not made any assumption on the parameter values. From now on, without
loss of generality, we assume that � = � – r, that is, r = �.
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4. PRICING THE REAL OPTION OF WAITING WHEN CONSUMPTION CAN BE
DELAYED

If we suppose a corner solution, w
1t
 = 1 and w

2t
 = 0, then

2

1

1
1

E r�
�� �

� � � � � � �� �� �� � �
(14)

and

1
V

V VE r�
�� �

� � � � � ��� �� �� �
. (15)

In this case, it can be shown that �
1
 = r – 1. After some simple computations, we have that

equations (14) and (15) collapse in

� = r + �2 – 
1

E�
�� �

� � �� �� �
, (16)

and

1
V

V VE r�
�� �

� � � � � ��� �� �� �
. (17)

From (17), it follows

2
2 2 2

2

( ( 1), ) ( , ) 1
1 2

t t
t t t

t tt

V S t V S t V V V V
S SE rV S

t S SS
�

� �� � �� � � � � �
� � � �� � � � �� �� � � �� � � � ��� � � �

.

If we now substitute (16) in the above equation, we get

2
2 2

2

( ( 1), ) ( , )
1

0
21

t t t
t

t t
t t

V
V S t V S t S

V V VE S
r S S rV

t S S
�

�� �� � � � �� � � �� � �� �� � � � �� � �� �� �� �� � �� �� � � �
. (18)

We impose the boundary conditions V
 
(0, t) = 0 and V

 
(S

t
, T) = max

 
(S

t
 – K, 0) where K is the

exercise price of the real option (the cost, in terms of goods, of delaying consumption until the
“last minute” = T ). In such a case, without loss of generality, we may consider a finite planning
horizon [0, T ] in the expected utility expressed in (12). Notice that if f� 

(�) is the density function
of �, then the presence of the expected value in the above equation given by

( (1 ), ) ( , ) ( (1 ), ) ( , )
( )

1 1
t t t tV S t V S t V S t V S t

E f d
�

� ���

� � � � � � � �� � � �
� � �� � � �� � � �� � � �

�

produces in (18) a (partial) differential-integral equation. Notice that if � is constant in (18), by
redefining � as �/(� + 1) , we obtain Merton’s (1976) formula. Finally, observe that when � = 0
or � = 0, equation (18) reduces to the Black-Scholes’ (1973) second order parabolic partial
differential equation. Observe now that if we introduce the following change of variable:
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� = y
��

� �� �
� �

�� �
,

then one of the expectations terms in (18) satisfies

1
E

�� �
� �� �� �

= 
1

X
E

X

��

��

� �
� �

�� �

= 
0

[( )/ ]
( )

[( )/ ] 1
Y

y
f y dy

y

���

��

� � �
� � � ��

= 
0 1

e d
� ���

�
� ��

= – 
 
e��(– 

1, 1),

where ��(– 
1, 1) = –

 
��(0, 1) + e –1, ��(0, 0) = �, ��(0, �) = 0, and ��(0, 1) � 2/9 (in fact, ��(0, 1) =

0.219383934 ...). Here, ��(a, b) denotes the incomplete Gamma function. In such a case, equation
(18) can be transformed into

2
2 2

2

( (1 ), ) ( , ) 1 2
01

1 2 9
t t

tt
tt

V S t V S t VV V
E r SS r Ve

St S
�

� � �� � �� �� � � �� � � � �� � � ��� �� � � �� � �� � �� � �� �
.

A possibility to determine V
 
(S

t
, t) consists in defining a sequence of random variables Yn,

each defined as the product of n independent and identically distributed random variables � + 1,
with Y

0
 = 1. In other words, if {�

n
}

n � IN
 is a sequence of independent and identically distributed

random variables. We define

Y
0

= 1

Y
1

= �
1
 + 1

Y
2

= (�
1
 + 1)

 
(�

2
 + 1)

�

Y
n

= 
1

n

k �
� (�

k
 + 1)

�

In this case, the solution of equation (18) with the boundary conditions

V
 
(0, t) = 0, and V

 
(S

t
, T ) = max

 
(S

t
 – K, 0),

is given by

V
 
(S

t
, t) = 

( )/ ( 1)
[ / ( 1)]( 1)

0

[ ( )/( 1)]
( ,

!

T t n
E T t

Yn BS t n
n

e T t
E E V S Y e t

n
�

�� � � ��
�� � � � �

�
�

� �� � � �
� �
� �

� , (19)
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where � is independent of {�
n
}

n � IN
 and V

BS 
(�, �) is the basic Black-Scholes solution. Indeed,

consider

V
 
(S

t
, t) = ( )

,
0

[ ]n
Yn n t BS

n

E E P V
�

�
�
� , (20)

where

P
n, t

 =
( )/( 1)[ ( )/( 1)]

!

T t ne T t
n

�� � � � � � � �

U
n, t

 = Y
n 
e–�E��[�/(� + 1)]

 
(T – t)

and

V
BS
(n) = V

BS 
(S

t 
U

n, t
, t).

In what follows, it will be convenient to introduce the notation

Q
n, t

 = S
t 
U

n, t
.

In such a case,

t

V

S

�
�

 =
( )

, ,
0 ,

n
BS

n t n tYn
n n t

V
P UE E

Q

�

�
�

� ��
� �

�� �� �
� , (21)

2

2
t

V

S

�
�

 =
2 ( )

2
, , 2

0 ,

n
BS

n t n tYn
n n t

V
P UE E

Q

�

�
�

� ��
� �

�� �� �
� , (22)

and

V

t

�
�

 =
( )

, ,
0 ,

[ /( 1)]
n

BS
n t n tYn

n n t

V
P QE E E

Q

�

� �
�

� ��
� � � � � �

�� �� �
�

( )( )
,

,
0 0 1

nn
n t BSBS

Yn Ynn t
n n

P VV
E E E EP

t

� �

� �
� �

� �� ��� �� � �� �
� � �� �� � � �

� �

�� � � � ��

�
�

� �� �� � � �
�� � �� �

� � �� �� �� �
�

( ) / ( 1) 1 ( )

1

[ ( )/( 1)]
( 1)! 1

T t n n
BS

Yn
n

e T t V
E E

n
. (23)

Hence, by virtue of (22) and (23) , we get

V

t

�
�

 =
( )

,
0

( , )
[ /( 1)]

1

n
tBS

t Yn n t
nt

V S tV V
E S E E EP

S t

�

� � �
�

� � � �� �� � � � � � �� � � �� �� � � �� �
�

1

( )/( 1) ( 1)

0

[ ( )/( 1)]
! 1m

T t m m
BS

Y
m

e T t V
E E

m�

�� � � � ��

�
�

� �� �� � � �
�� � �� �

� �� �� �� �
� . (24)
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Observe that the last term in the above equation can be written as

(( 1) , )

1
tV S t

E�
� �� �

� �� �� �
 =

( )
,

,
0

( ( 1),

1n

n
BS n t

Y n t
n

V Q t
E E P

�

�
�

� �� �
� �

� �� �� �
�

=
1

( 1)
1,

,
0

( , )

1n

n
BS n t

Y n t
n

V Q t
E E P

�

��
�

�
�

� �
� �

� �� �� �
� , (25)

since Q
n + 1, t

 y
 
Q

n, t 
(� + 1) are independent and identically distributed random variables. Therefore,

equation (24) is transformed into

V

t

�
�

 = 
( )

,
0

( ( 1), ) ( , )

1n

t t tn
tBS

Y n t
n

V
V S t V S t S

SV
E E EP

t

�

� �
�

�� �� � � � �� �� � �� � �� �� � � �� � �� �� �
� . (26)

From (21), (22) and (26), it follows

2
2 2

2

1
2 t t

tt

V V V
S rS rV

t SS

� � �
� � � �

� ��

=
( ) 2 ( ) ( )

2 2 ( )
, ,, 2

,0 ,

1
2

n n n
nBS BS BS

n t n t BSn t Yn
n tn n t

V V V
Q rQ rVO E

t QQ

�

�

� �� � �
� � � �� �

� ��� �� �
�

– 
( ( 1), ) ( , )

1

t t t
t

V
V S t V S t S

SE�

�� �� � � � �� ��� � �
� �� �� �

. (27)

Since
( ) 2 ( ) ( )

2 2 ( )
, ,2

,,

1
2

n n n
nBS BS BS

n t n t BS
n tn t

V V V
Q rQ rV

t QQ

� � �
� � � �

� ��
 = 0

holds for all n � IN
 
� {0}, we deduce, immediately, that (19) is solution of (18).

5. NUMERICAL APPROXIMATIONS

In order to obtain numerical approximations of (19), the quantity inside the mathematical
expectations in (19) given by

M�, Yn
 = 

( )/ ( 1)1000
( )

0

[ ( )/( 1)]
!

T t n
n

BS
n

e T t
V

n

�� � � �

�

� � � �� (28)

is simulated by using the statistical software “Xtremes” (Reiss and Thomas, 2001) and Ripley’s
methodology (1987) for Monte Carlo simulations. Subsequently, we compute the average of
10,000 simulated values of M�, Yn

 to obtain, for different values of �, approximate solutions of
the real option of waiting when consumption can be delayed. To do this, let us first consider in
Table 1 the parameter values for computing the basic Black-Scholes price V

BS
(0). In this Table, S

t
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stands for the price of money in terms of goods, K is the cost (in terms of goods) of delaying
consumption until the last minute, r is the nominal interest rate, and T – t is the term. Units of S

t

and K are given in money in terms of consumption goods.

Table 1
Parameter Values of the Benchmark Black-Scholes Price

Parameters for Black-Scholes price of the real option

S
t

K r � T – t V
BS
(0)

42.00 41.00 0.11 0.13 0.25 2.436

Table 2 shows numerical approximation of the price of the real option by using Monte
Carlo simulation for different values of � with E� 

[�/(� + 1)] = –
 
e��(– 

1, 1). It is assumed, for
simulation purposes, that � follows a Fréchet distribution with mean 0.01 and variance 0.001.

Table 2
Simulated Prices of the Real Option

Real option price

E� [��/(� + 1)] = –
 
e��(– 

1,1)

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

V
 
(S

t
, t) 2.646 2.673 2.698 2.726 2.742 2.845 2.865 2.898 3.012 3.081

It is important to point out that option prices in Table 2 depend of the choices of the mean
and variance of the random variable �. We may conclude, from Table 2 and the chosen mean
and variance, that the price of the real option of waiting when consumption can be delayed
increases when the average number of jumps per unit of time increases since a growing � rises
the future opportunity cost of purchasing goods.

6. CONCLUSIONS

We have developed a stochastic model of a small open monetary economy in which agents
have expectations of the exchange-rate dynamics guided by a mixed diffusion-jump process.
The expected size of a possible exchange-rate depreciation is supposed to have an extreme
value distribution of the Fréchet type. By using a logarithmic utility, we have derived an analytical
solution for valuing the real option of waiting when consumption can be delayed; a claim that is
not traded. The provided explicit solutions have made much easier the understanding of the key
issues of extreme jumps in valuing contingent claims in a cash-in-advance economy. Finally, a
Monte Carlo simulation was carried out to obtain approximate solutions of the real option
price.

It is worthwhile mentioning that the derived results do not depend on the assumption of
logarithmic utility, which is a limit case of the family of constant relative risk aversion utility
functions. Needles to say, both nontradable and durable goods will provide more realistic
assumptions and should be considered in extending, in further research, the real option of waiting
when consumption can be delayed.
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Notes

1. We refer the reader to the two classical books in real options: Dixit and Pindyck (1994), and Schwartz
and Trigeorgis (2001).

2. Another approach for the dynamics of the underlying asset can be found in Venegas-Martinez (2005).
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