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Abstract: In this paper, we first discuss the dynamics of hyperchaotic Vaidyanathan system (2015) and discuss its
qualitative properties, bifurcation diagram and Lyapunov exponents. The phase portraits of the 4-D hyperchaotic
Vaidyanathan system are displayed using MATLAB. We show that the hyperchaotic Vaidyanathan system has three
unstable equilibrium points. The Lyapunov exponents of the hyperchaotic Vaidyanathan system are obtained as

L
1
 = 4.1021, L

2
 = 0.1461, L

3
 = 0 and L

4
 = –34.2174. The Lyapunov dimension of the hyperchaotic Vaidyanathan

system is obtained as D
L
 = 3.1242, which is fractional. Next, we derive new results for the adaptive control design of

the hyperchaotic Vaidyanathan system with unknown parameters. The adaptive control results for the hyperchaotic
Vaidyanathan system have been established using Lyapunov stability theory. Numerical simulations with MATLAB
have been shown to validate and demonstrate all the new results derived in this paper. Finally, a circuit design of the
4-D hyperchaotic Vaidyanathan system is implemented in LabVIEW to validate the theoretical model.
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1. INTRODUCTION

A chaotic system is commonly defined as a nonlinear dissipative dynamical system that is highly sensitive to even
small perturbations in its initial conditions [1-4]. In other words, a chaotic system is a nonlinear dynamical system
with at least one positive Lyapunov exponent. Some paradigms of chaotic systems can be listed as Lorenz system
[5], Rössler’s system [6], Sprott systems [7], Chen system [8], Lü-Chen system [9], Liu system [10], etc.

In the last two decades, many new chaotic systems have been discovered like Tigan system [11], Li system
[12], Sundarapandian systems [13-14], Vaidyanathan systems [15-70], Pehlivan system [71], Akgul system
[72], Tacha system [73], Sampath system [74], Pham systems [75-80], etc.

Hyperchaotic systems are the chaotic systems with more than one positive Lyapunov exponent. They have
important applications in control and communication engineering. Some recently discovered 4-D hyperchaotic
systems are hyperchaotic Vaidyanathan systems [81-100], etc.
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Chaos theory has several applications in various fields such as oscillators [101-106], chemical reactors
[107-127], biology [128-156], neural networks [157-158], robotics [159-160], memristors [161-165], etc.

The problem of control of a chaotic system is to find a state feedback control law to stabilize a chaotic
system around its unstable equilibrium [166-167]. Some popular methods for chaos control are active control
[168-174], adaptive control [175-180], sliding mode control [181-185], etc.

In this paper, we discuss the properties of the 4-D hyperchaotic Vaidyanathan system ([88], 2015) with
four quadratic nonlinearities. The phase portraits of the hyperchaotic Vaidyanathan system [88] are displayed
using MATLAB. We show that the hyperchaotic Vaidyanathan system has three equilibrium points, which are
unstable. The Lyapunov exponents of the hyperchaotic Vaidyanathan system are obtained as

1 4.1021,L � 2 0.1461,L � 3 0L �  and 4 34.2174.L � �  The Lyapunov dimension of the hyperchaotic

Vaidyanathan system is derived as 3.1242.LD �

Next, we derive new results for the adaptive control design of the hyperchaotic Vaidyanathan system with
unknown parameters. The adaptive control results for the hyperchaotic Vaidyanathan system have been established
using Lyapunov stability theory. Numerical simulations with MATLAB have been shown to validate and
demonstrate all the new results derived in this paper. Finally, a circuit design of the novel 4-D hyperchaotic
system is implemented in LabVIEW to validate the theoretical model.

2. HYPERCHAOTIC VAIDYANATHAN SYSTEM

In this section, we study the hyperchaotic Vaidyanathan system ([88], 2015) described by the dynamics
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where 1 2 3 4, , ,x x x x are the states and , , ,a b c r are constant, positive parameters of the system.

The system (1) describes a strange hyperchaotic attractor for the parameter values

30,   44,   12.6,   23a b c r� � � � (2)

For numerical simulations, we take the initial values of the system (1) as

1 2 3 4(0) 0.2,   (0) 0.3,   (0) 0.4,   (0) 0.1x x x x� � � � (3)

Figures 1-4 show the 3-D views of the hyperchaotic Vaidyanathan system (1) in 1 2 3( , , ),x x x 1 2 4( , , ),x x x

1 3 4( , , )x x x and 2 3 4( , , )x x x spaces respectively.

3. PROPERTIES OF THE HYPERCHAOTIC VAIDYANATHAN SYSTEM

In this section, we detail the qualitative properties of the novel 4-D hyperchaotic system (1), which is described
in Section 2. We take the parameter values as in (2).
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Figure 1: 3-D view of the hyperchaotic Vaidyanathan system in 1 2 3( , , )x x x  space

Figure 2: 3-D view of the hyperchaotic Vaidyanathan system in 1 2 4( , , )x x x  space
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Figure 3: 3-D view of the hyperchaotic Vaidyanathan system in 1 3 4( , , )x x x  space

Figure 4: 3-D view of the hyperchaotic Vaidyanathan system in 2 3 4( , , )x x x space
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(A) Dissipativity

We write the system (1) in vector notation as

1 1 2 3 4

2 1 2 3 4
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4 1 2 3 4

( , , , )

( , , , )
( )

( , , , )

( , , , )
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� �
� �
� �

�
(4)

where

1 1 2 3 4 2 1 2 3

2 1 2 3 4 1 2 4 1 3

2
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(5)

We take the parameter values as in the hyperchaotic case (2), i.e.

30,   44,   12.6,   23a b c r� � � � (6)

The divergence of the vector field f on R4 is obtained as

31 2 4

1 2 3 4

div ,
ff f f

f a c c a
x x x x

�� � �
� � � � � � � � � �
� � � � (7)

where

a = 30 > 0 (8)

Let � be any region in R4 having a smooth boundary.

Let ( ) ( ),tt� �� � where t� is the flow of .f

Let ( )V t denote the hypervolume of ( ).t�
By Liouville’s theorem, it follows that

1 2 3 4 1 2 3 4

( ) ( )

(div )    ( )    
t t

dV
f dx dx dx dx a dx dx dx dx aV

dt � �

� � � � �� � (9)

Integrating the linear differential equation (9), we get the solution as

( ) (0)exp( )V t V at� � (10)

From Eq. (10), it follows that the volume ( )V t shrinks to zero exponentially as .t ��

Thus, the novel 4-D hyperchaotic system (1) is dissipative.
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Hence, the asymptotic motion of the system (1) settles exponentially onto a set of measure zero, i.e. a
strange attractor.

(B) Symmetry

The 4-D novel hyperchaotic system (1) is invariant under the coordinates transformation

1 2 3 4 1 2 3 4( , , , ) ( , , , )x x x x x x x x� � �� (11)

Since the transformation (11) persists for all values of the system parameters, the novel 4-D hyperchaotic

system (1) has rotation symmetry about the 3x � axis and that any non-trivial trajectory must have a twin trajectory.

(C) Invariance

The x3 – axis ( 1 0,x � 2 0,x � 4 0)x � is invariant for the system (1). Hence, all orbits of the system (1) starting

on the x3 – axis stay in the x3 – axis for all values of time. Also, this invariant motion is unstable.

(D) Equilibrium Points

The equilibrium points of the 4-D hyperchaotic Vaidyanathan system (1) are obtained by solving the following
nonlinear system of equations

1 1 2 3 4 2 1 2 3

2 1 2 3 4 1 2 4 1 3

2
3 1 2 3 4 1 2 3 2

4 1 2 3 4 1 2

( , , , ) ( ) 0

( , , , ) 0

( , , , ) 0

( , , , ) 0
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� � � ��
� � � � � ��
�

� � � ��
� � � � ��

(12)

We take the parameter values as in the hyperchaotic case, viz.

30,   44,   12.6,   23a b c r� � � � (13)

Solving the equations (12) using the values (13), we obtain the equilibrium points

0 1 2

0 467.05 467.05

0 20.31 20.31
,    ,    

0 720.00 720.00

0 356574.15 356574.15

E E E

�� � � � � �
� � � � � ��� � � � � �� � �
� � � � � �� �
� � � � � ��� � � � � �

(14)

The Jacobian matrix of the novel hyperchaotic system (1) at any point 4x�R is obtained as

3 2

3 1

2 1 2

30 30 0

44 12.6 1
( )

2 12.6 0

1 23 0 0

x x

x x
J x

x x x

� �� �
� �� �� ��
� �� �
� �� �� �

(15)
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The eigenvalues of 0 0( )J J E�  are numerically obtained as

1 2 3 412.6,   50.7106,   0.4318,   32.8787� � � �� � � � � � (16)

This shows that E0 is a saddle-point and hence it is unstable.

The eigenvalues of 1 1( )J J E�  are numerically obtained as

1 2 3,40,   0.3551,   2.76 852.04 i� � �� � � � � (17)

This shows that E1 is a saddle-focus and hence it is unstable.

The eigenvalues of 2 2( )J J E� are the same as the eigenvalues of 1.J  This shows that 2E is a saddle-focus

and hence it is unstable.

Hence, all the three equilibrium points of the novel hyperchaotic system (1) are unstable.

(E) Lyapunov Exponents

We take the parameter values of the hyperchaotic Vaidyanathan system (1) as

30,   44,   12.6,   23a b c r� � � � (18)

We take the initial conditions of the hyperchaotic Vaidyanathan system (1) as

1 2 3 4(0) 0.2,   (0) 0.3,   (0) 0.4,   (0) 0.1x x x x� � � � (19)

The Lyapunov exponents of the system (1) are numerically obtained with MATLAB as

1 2 3 44.1021,   0.1461,   0,   34.2174L L L L� � � � � (20)

Thus, the system (1) is hyperchaotic, since it has two positive Lyapunov exponents.

The MATLAB plot of the Lyapunov exponents of the hyperchaotic Vaidyanathan system (1) is depicted in
Figure 5.

Figure 5: Lyapunov exponents of the hyperchaotic Vaidyanathan system
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(F) Lyapunov Dimension
The Lyapunov dimension of the hyperchaotic Vaidyanathan system (1) is determined as

1 2 3

4

3 3.1242
| |L

L L L
D

L

� �
� � � (21)

which is fractional.

(G) Bifurcation and Bicoherence

By fixing all the other parameters, c  is varied and the behavior of the hyperchaotic system (1) is observed in
Figure 6 where the parameter c is varied with state x1. Figure 7 shows the attractor mapped with c varying with
state x2. Figure 8 shows the attractor mapped with c varying with state x3. Figure 9 shows the attractor mapped
with c varying with state x4. It can be clearly observed that most of the bifurcation of the attractor happens in state
x4. Generally speaking, when the system’s biggest Lyapunov exponents is large than zero, and the points in the
corresponding bifurcation diagram are dense, the chaotic attractor will be found to exist in this system. Therefore,
from the Lyapunov exponents and bifurcation diagrams in Figure 6, 7, 8 and 9 a conclusion can be obtained that
chaos exist in the hyperchaotic system when selecting a certain range of parameters.

Figure 6: Bifurcation plot of the state 1x vs c

Figure 7: Bifurcation plot of the state 2x vs c
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The bicoherence or the normalized bispectrum is a measure of the amount of phase coupling that occurs in
a signal or between two signals. Both bicoherence and bispectrum are used to find the influence of a nonlinear
system on the joint probability distribution of the system input. Phase coupling is the estimate of the proportion

of energy in every possible pair of frequency components 1 2 3, , , , .nf f f f�  Bicoherence analysis is able to detect

coherent signals in extremely noisy data, provided that the coherency remains constant for sufficiently long
times, since the noise contribution falls off rapidly with increasing .N

The auto bispectrum of a chaotic system is given by Pezeshki [187]. He derived the auto bispectrum with

the Fourier coefficients as *
1 2 1 2[ ( ) ( ) ( )]E A A A� � � �� where n�  is the radian frequency and A is the Fourier

coefficients of the time series.

Figure 9: Bifurcation plot of the state 4x vs c

Figure 8: Bifurcation plot of the state 3x vs c
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The normalized magnitude spectrum of the bispectrum known as the squared bicoherence is given

by
2

1 2 1 2 1 2( , ) / ( ) ( ) ( )B P P P� � � � � �� where 1( )P � and 2( )P �  are the power spectrums at 1f  and 2f .

Figures 10 to 13 show the bicoherence plots of states 1 2 3 4, , & .x x x x  As can be seen from the plots, states

1 3&x x  shows more multi frequency components and thus contribute to larger Lyapunov exponents for the

chaotic system. States 2 4&x x have less multi frequency components and hence have less or sometimes null

impact on the chaotic behavior of the system.

Figure 10: Bicoherence plot of state x1

Figure 11: Bicoherence plot of state x2
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4. ADAPTIVE CONTROL OF THE HYPERCHAOTIC VAIDYANATHAN SYSTEM
WITH UNKNOWN PARAMETERS

In this section, we design new results for the adaptive controller to stabilize the hyperchaotic Vaidyanathan
system with unknown parameters for all initial conditions.

Thus, we consider the hyperchaotic Vaidyanathan system with controls given by

1 2 1 2 3 1

2 1 2 4 1 3 2

2
3 1 2 3 2 3

4 1 2 4

( )x a x x x x u

x bx cx x x x u

x x x cx x u

x x rx u

� � � ��
� � � � � ��
�

� � � ��
� � � � ��

�

�

�

�

(22)

Figure 13: Bicoherence plot of state x4

Figure 12: Bicoherence plot of state x3
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where 1 2 3 4, , ,x x x x are state variables, , , ,a b c r are constant, unknown, parameters of the system and

1 2 3 4, , ,u u u u are adaptive controls to be designed.

We aim to solve the adaptive control problem by considering the adaptive feedback control law

1 2 1 2 3 1 1

2 1 2 4 1 3 2 2

2
3 1 2 3 2 3 3

4 1 2 4 4

ˆ( )( )

ˆ ˆ( ) ( )

ˆ( )

ˆ( )

u a t x x x x k x

u b t x c t x x x x k x

u x x c t x x k x

u x r t x k x

� � � � ��
�

� � � � � ��
�

� � � � ��
� � � ��

(23)

where 1 2 3 4, , ,k k k k are positive gain constants.

The closed-loop system is obtained by substituting (23) into (22) as

1 2 1 1 1

2 1 2 2 2

3 3 3 3

4 2 4 4

ˆ[ ( )]( )

ˆ ˆ[ ( )] [ ( )]

ˆ[ ( )]

ˆ[ ( )]

x a a t x x k x

x b b t x c c t x k x

x c c t x k x

x r r t x k x

� � � ��
�

� � � � ��
�

� � � ��
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�

�

�

�

(24)

To simplify (24), we define the parameter estimation error as

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

r

e t a a t

e t b b t

e t c c t

e t r r t

� ��
�

� ��
�

� ��
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(25)

Substituting (25) into (24), we obtain

1 2 1 1 1

2 1 2 2 2

3 3 3 3

4 2 4 4

( )a

b c

c

r

x e x x k x

x e x e x k x

x e x k x

x e x k x

� � ��
� � � ��
� � � ��
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�

�

�

�

(26)

Differentiating the parameter estimation error (25) with respect to ,t we get

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

r

e t a t

e t b t

e t c t

e t r t

� � �
�
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�

� ��
�

� ���

��

��

��

��

(27)
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Next, we find an update law for parameter estimates using Lyapunov stability theory.

Consider the quadratic Lyapunov function defined by

� �2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1
( , , , , , , , ) ,

2a b c r a b c rV x x x x e e e e x x x x e e e e� � � � � � � � (28)

which is positive definite on R8.

Differentiating V along the trajectories of (26) and (27), we obtain

2 2 2 2
1 1 2 2 3 3 4 4 1 2 1 1 2

2 2
2 3 2 4

ˆˆ( )

ˆ ˆ     

a b

c r

V k x k x k x k x e x x x a e x x b

e x x c e x x r

� �� �� � � � � � � � � �� � � �� �
� � � �� � � � � �� � � �

���

� � (29)

In view of (29), we define an update law for the parameter estimates as

1 2 1

1 2

2 2
2 3

2 4

ˆ ( )

ˆ

ˆ

ˆ

a x x x

b x x

c x x

r x x

� � �
�
� ��
�
� ��

�
� ���

�

�

�

�

(30)

Theorem 1. The novel hyperchaotic system (22) with unknown system parameters is globally and
exponentially stabilized for all initial conditions by the adaptive control law (23) and the parameter update law

(30), where ,ik ( 1,2,3, 4)i � are positive constants.

Proof. The result is proved using Lyapunov stability theory [186]. We consider the quadratic Lyapunov

function V defined by (28), which is a positive definite function on 8.R

Substituting the parameter update law (30) into (29), we obtain V� as

2 2 2 2
1 1 2 2 3 3 4 4V k x k x k x k x� � � � �� (31)

which is a negative semi-definite function on R8.

Therefore, it can be concluded that the state vector ( )x t and the parameter estimation error are globally

bounded.

We define

� �1 2 3 4min , , , .k k k k k� (32)

Then it follows from (32) that

2
V k x� ��  or 

2
.k x V� � � (33)
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Integrating the inequality (33) from 0 to ,t we get

2

0

( )    ( ) (0) ( )
t t

o

k x d V d V V t� � � �� � � �� � � (34)

From (34), it follows that 2( ) .x t L�

Using (26), we can conclude that ( ) .x t L���

Hence, using Barbalat’s lemma [186], we can conclude that ( ) 0x t � exponentially as t �� for all initial

conditions 4(0) .x �R

This completes the proof.

Numerical Results

For the hyperchaotic Vaidyanathan system (22), the parameter values are taken as in the hyperchaotic case (2),
i.e.

30,   44,   12.6,   23a b c r� � � � (35)

We take the feedback gains as

1 2 3 46,   6,   6,   6k k k k� � � � (36)

The initial values of the hyperchaotic system (22) are taken as

1 2 3 4(0) 2.6,  (0) 17.2,  (0) 14.7,   (0) 15.6x x x x� � � � � � (37)

The initial values of the parameter estimates are taken as

ˆˆ ˆ ˆ(0) 3.4,  (0) 5.7,   (0) 2.8,   (0) 12.2a b c r� � � � (38)

Figure 14 depicts the time-history of the controlled hyperchaotic Vaidyanathan system (22).

5. LABVIEW IMPLEMENTATION OF THE HYPERCHAOTIC VAIDYANATHAN
SYSTEM

In this section, we discuss about the digital implementation of the hyperchaotic Vaidyanathan system in LabVIEW.
We used Control and Simulation loop for the realization of the system. Figure 15 shows the LabVIEW block
diagram of the system (1). Figure 16 shows the 3D phase portraits of states X1X2X3 and X2X3X4. Different
colors in the trajectory shows the speed of the chaotic orbit. For example, the dark colors like green and red
shows that the trajectory of the chaotic orbits approaches faster and colors like pale blue and yellow shows the
trajectory approach is slower. The system with controller as in (22), the adaptive controller (23) and the parameter
update laws (30) are then implemented in LabVIEW for the numerical analysis of the control algorithm. The
system in (22) is analyzed with and without controller. Figure 17 shows the performance of the proposed controller
for various values of controller gains. Its important to select an optimal controller gain in order to achieve an
efficient controller. For the proposed adaptive controller, 1 2 3 4 20k k k k� � � � are the optimal controller
values.
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Figure 14: Time history of the controlled hyperchaotic Vaidyanathan system

Figure 15: LabVIEW Block Diagram of the System (1)
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Figure 16: 3D state portraits of X1X2X3 and X2X3X4
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6. CONCLUSIONS

In this paper, we described the hyperchaotic Vaidyanathan attractor and discussed the qualitative properties of
the system. We showed that the novel hyperchaotic system has three unstable equilibrium points. The Lyapunov

exponents of the hyperchaotic Vaidyanathan system have been obtained as 1 4.1021,L � 2 0.1461,L � 3 0L �

and 4 34.2174.L � �  The Lyapunov dimension of the hyperchaotic Vaidyanathan system has been deduced as

3.1242,LD �  which is fractional. Next, we derived new results for the adaptive control design of the novel

hyperchaotic system with unknown parameters. The adaptive control results for the novel hyperchaotic system
have been established using Lyapunov stability theory. Numerical simulations with MATLAB have been shown
to validate and demonstrate all the new results derived in this paper. Finally, a circuit design of the hyperchaotic
Vaidyanathan system is implemented in LabVIEW to validate the theoretical model.
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