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Abstract: The aim of the present paper is to develop a generalized fractional
kinetic equation involving generalized multi-variable Mittag-Leffler function.
Using the Laplace transform, the solutions of the fractional kinetic equation are
established in terms on general Mittag-Leffler function. The results obtained here
are general in nature to yield a large number known and (presumably) new results
as their special cases.
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1. INTRODUCTION AND PRELIMINARIES

Many important functions in applied sciences (which are popularly known as
Mittag-Leffler functions) are defined via infinite summation (or infinite products).
During the last one and a half decades, several interesting and useful extensions
of many of the familiar Mittag-Leffler functions have been considered by several
authors (see, for example, see the recent work [12],[13]). The above-mentioned
works have largely motivated our present study. Mittag-Leffler [8] introduced the
function E (z), defined

-
Ea(z)—gm (1.1)

Where z is a complex variable and I'(.) is a Gamma function, a > 0. The Mittag-
Leffler function is a direct generalization of the exponential function to which it
reduces for oo = 0. For 0 < o < 1; it interpolates between the pure exponential and a

1
hypergeometric function 1—2 Its importance is realized during the last two decades

due to its involvement in the problems of physics, chemistry, biology, engineering
and applied sciences. Mittag-Leffler function naturally occurs as the solution of
fractional order differential equation or fractional order integral equations. The
generalization E _(z) of was studied by Wiman [11] and he defined the function as
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Eyp(2)= zl"(oc , (o,B e C;R(o) > 0,R(B) > 0) (12)

Which is known as Wimans function or generalized Mittag- Leffer function as
E  (z) = E (2).The main properties of these functions are given in [14] and a more
comprehensive and a detailed account of Mittag-Leffer functions are presented by
Dzherbashyan [15]. Prabhakar [9] introduced the function EY B(z) in the form of

Eyp(2)= ZF(Ocn+B) (08,7 € C;R(0) > 0,R(B) > 0,R(y) >0) (1.3)

and (1), denotes the familiar Pochhammer symbols or the shifted factorials,
since (1), =n! (neN,)

I'(y+n n=0;LeC—{0
( )n = i;y(,y) ) {y(y+1) ...... (y+n-1) EneN;heC){ }) (1'4)

Srivastava and Tomovski [10] studied and generalized the Mittag-Leffer type

function Eg,ﬁ (z) is defined as follows

v,k
B( 2)= 2F(0m+[3) n!

(a,B,y € C;R(0) > 0,R(P)>0,%R(y) > 0) (1.5)

which, in the special case when
k=g(ge0,)UN) (1.6)
and min {9?(0(),9?(8)} >0 was considered earlier by Shukla and Prajapati [16].

A multivariable analogue of Mittag-Leffer function defined in (1.3) has also
been studied by Gautam [17] and Saxena et al. [18] in the following form

E" 215 ,Zr]zE(Yl """" Y")[Z], ...... 22,

;)Y RV
N Di,..... (D, AL
B kzk Tk, +othyp,) ok, (1.7)
Where ?u,yj,pje((:;ﬂ?(pj)>0;j:1,2, ...... 7.
If we take p; =Py =...... =p, =1, then the above equation (1.7) reduces to the

following confluent hypergeometric Series (see [19]):
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1 Z Hll(Y)kZ .z

1—‘(7\‘) k kr=0 (7\-)]{1_'_ ....... r kl ' ..... kr'

Where

Ay;.z;€C(j=1,2,....,7) andmax.{ p

z[}<trezy

.......

A mild generalization of multivariable analogue of Mittag-Leffer function (1.7)
is also due to Saxena et al.defined as [18]

o koK
EO0, = 3 gy iy, 252 (19

oo oo, = o T+ kp +o+ ko) Kyl

Where
ke(C\Za;yj,pj e(C;EK(pj)>O;EK(yj)>O;lj eN(j=1,....,r).

2. FRACTIONAL KINETIC EQUATIONS

The fractional differential equation between rate of change of the reaction, the
destruction rate and the production rate was established by Haubold and Mathai [2]
given as follows: The solutions of the fractional kinetic equations in this section are
obtained in terms of the generalized

dN
——==d(N)+p(N,) 2.1)
dt

Where N = N(t) the rate of reaction, d = d(N) the rate of destruction p = p(N)

the rate of production and N, denotes the function defined by N (t*) =N(t- t* )t* >0

N _ ., 2.2)
dr

With the initial condition that N (t = 0) = N is the number density of the species
iattime t =0 and ¢, > 0. If we remove the index i and integrate the standard kinetic
equation (2.2), we have

N(t)= Ny = —c,D,”'N(2) (2.3)

Where (D, is the special case of the Riemann-Liouville integral operator , D,"
defined as

oD} f(t)—m j (t—$)"" f(s)ds, (£>0,R(») >0 (2.4)

The fractional generalization of the standard kinetic equation (2.3) is given by
Haubold and Mathai [2] as follows:
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N(1)—= Ny =—c"oD; ' N(t) (2.5)

and obtained the solution of (2.5) as follows:

N(7)=N, Zr(k G (2.6)

Further, [5] considered the following fractional kinetic equation:
N(t)= Ny f(t)=—c"yD;"N(t) (R(v)>0) (2.7)

Where N(t) denotes the number density of a given species at time t, N, = N(0)
is the number density of that species at time t = 0; ¢ is a constant and f € L(0,0).
By applying the Laplace transform to (2.7) (see[4])

F(P)

l+c"p™

L{N(t): p}=Ny—>—= (Z( "y ‘V"]F(p) (neNo§<1) 2.8)

Where the Laplace transforms [6] is given by

F(p)=L{N@:p}=[ e f@dt,  (R(p)>0) 2.9)

In this section, we investigated the solutions of the generalized fractional kinetic
equations by considering generalized Multi index Bessel function.

Remark 1. The solutions of the fractional kinetic equations in this section are
obtained in terms of the generalized Mittag-Leffler function £, g(x) (Mittag-Leffer
[3]), which is defined as:

Eyp(2)= Z +B) R(or) > 0,R(B) > 0. (2.10)

Theorem 1: If > 0,a>0,v>0, Ae C\Zy;v,,p; €C;
RP;)>0R(y;)>0;/, e N(j=1,...,7).
such that a # d, then the solution of the following fractional kinetic equation:

l v, v v, v v -V
N(t)—NOE((g (@ 1), (2, d 1) = =0 D] N (1) @2.11)

is given by following formula
- Dy Vi z0"d"Y (20" d" )
N(f)= N, Z - ol (z ' ( :

P A+ kpy +....+k,.p,) k... k!

<T@y + et k) DX E, oy (=a'1). (2.12)
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Proof. Laplace transform of Riemann-Liouville fractional integral operator is given
by (Erdelyi etal. [1], Srivastava and Saxena [7]):

LoD 1@ ph=p"F(p) (2.13)
Where F(p) is defined in (2.9). Now, applying Laplace transform on (2.11) gives,
J ,(lj v,V
L{NG@ ph= NoL{ES 3 Tz, .

(P
(z,d"t")]; p-a'L{o DN @) p} (2.14)
> Do Dir (zd" ") (2, d"t
N(p)=N0 J. ept 2 1 > by (1 ) (r )dl (215)
0 kT TA+kp +....+kp,) kgl k!
—a"p~"N(p)
Interchanging the order of integration and summation in (2.15), we have
- it Vi
N(p)"l'avp_vN(p):N 1 seeeneens "
0 K 25{20 T'A+kp, +....+k,p,)
ik vyK, -
(zd")"...(z,dY) XJ‘ o Ptk g (2.16)
k\....k,! 0
3 i Vg Vit
Ok, ........ s o TAA+kpy +.ot k,p,)
vk, vk,
y (zyd")" .z, d”) Tk +.....4+ k) +1) 2.17)
kl! .... kr! pv(k‘+ ....... +k,)+1
this leads to
. it Vi zd") . (z,.d")"
N(p)=N, Z ol (z )' (')
k=0 T'A+kp; +....+k,p,) k.. k!

x Tv(ky 4ot )+ 1) xq pmChiFe +kr>“)2{—(£j ] (2.18)

Taking Laplace inverse of (2.18), and by using

v—1

L—l {p—v;t} — li(v)

, (R(v)>0) (2.19)
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we have

LYN(p)} =N,

i Vit Vit (zd")5 . (z,d)

Ky k,=0r(}"+klpl+ ----- +k.p,) k... k!

x T(ky + ¥k )+ 1) X L7 {2(—1)’ a” p it W*”}
1=0

- Vit Vi (zd")5 . (z,d")

ie. N(t)=N,
Okl,,,,%_zol“(mhpﬁ ..... +kp,)  kl.ok,!

oo tv(k‘+ ...... +k,+1)
Tk + .ot k) +1D)x 1 D (<D a”
1=0

" vk bth) N 1 (a'1")
Tk +.c+ k) +1) X1 {g;( N TOw T +k,+l)+1)}

Using (2.10)
o= Ny i (M,

Ky eeenk, =0

...... s, (zd" .z d Y
TA+kp, +....+k.p,) kel k!

Tk +ot b))+ DXE, i gy (—a't’)

Hence the required result.

Theorem 2. Ifd>0,a>0,v>0, ke(C\Za;yj,pj eC;
RP;)>0,R(y;)>0;/;, e N(j=1,...,r).
then the solution of the following fractional kinetic equation:

)y l/- v,V v,V v -V
N(t)—NOE((g/_’)),i (zd"t),s.(2,d" )] = ~d"yD; " N(7)

is given by following formula

N(Y=N i Wi, Wiy, (27d) (2,8 d)
OkI ....... k=0 T +kpy +..... +k,p,) k... k!

XDy + oot k) A DX Ey oy (=d"1)

(2.20)

2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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Theorem 3. Ifd>0,v>0,Le C\Z;;v,,p,; €C;
RP;)>0:R(y;)>0;/; e N(j=1,...,r),then
the solution of the following fractional kinetic equation
N(t) - E((g M@0, (2,0]= =d" DN (1) (2.26)

is given by following formula

N@)=N

i g Vicr (z)" ... (z.0)"

Koo ? T+ kp +othp,)  klok!

”

T+t k) A DX E, oy (=) (2.27)

Proof. The proof of the Theorem 2 and 3 are similar as that of Theorem 1, therefore
we omit the details.

3. SPECIAL CASES

By assigning the suitable values to the parameters, we have the following particular
cases.

If we choose l/. = 1(j = 1,...,r) the established results in Theorems 1, 2 and 3
reduces to the following form:
Corollary 1. If d>0,a> 0, v> 0,keC\Z5;yj,pj eC;
R(p,)>0:R(Y;)>0;(j=1....r),
such that a # d, then the solution of the following fractional kinetic equation:

;)
N(t)— NOE(p A

(24”1 ) (2,d" 1" Y] = =a", D] "N (1) 3.1)
is given by following formula

i i, Nie (zt°d") . (z,0"d")
T(A+kp; +....+k,p,) k... k, !

N(@) =
Kyoooonk, =0

STy + et k) DX E, o0 (=a'r) (32)
Corollary 2. Ifd>0,v>0,A € C\Zy;v,.p;€C
RP;)>0,R(y;)>0(j =1,....,r),then
the solution of the following fractional kinetic equation:

N = NoEg o[z, (2, ")) = ="y DN (1) (3.3)
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is given by following formula

< iy (Vi (zt'd") . (z,0"d" )
NO=No >, to AN
bk =0 A+kp, +.....+ k,p,) R L)
xTlky oot ) DX E, oy (—dY) (3.4)

Corollary 3. 1fd > 0,v>0, L e C\Z;;v,,p,; €C;
then the solution of the following fractional kinetic equation:

j /s l; v -V
N(t) - NOE((JJ{){;(\’)[(zlt),...,(z,t)] =—d" D" N(t) (3.5)

is given by following formula

- (Y)kI ......... N z)h .. z,.t k.
N(1)= N, z . (1)' (')
ko k=0 TA+kp, +.....+k,p,)  kl..k!
POk + oA k) A DX E, o gy (=d1) (3.6)
If we choose p, = ... =p, = 1, the established results in Theorems 1 2 and 3 reduces

to the following form:

Corollary 4. Ifd>0,a >0, v> O,XG(C\ZE;yj,pj eC;
RP;)>0:R(y;)>0;/, e N(j=1,...,r),
such that a # d, then the solution of following fractional kinetic equation’s:
N(@O) = Ne®@ [V, Y, M (2,d ) s (2,d" )] = —a” DTN () (3.7)

Is given by following formula:

N(t)=—2-
FO\') Ky k=0 (x)kl+ ..... +k, kl L kr !

XDk 4ot k) FDXE, oy gy (=a't") (3.8)

N i H;l(Yi)k,. (zt"d") . (z0"d" )

Corollary 5. Ifd>0,v>0,A € (C\Zg;yj,pj eC;
RP,)>0R(Y,;) >0, € NG =1,...,7),
then the solution of the following fractional kinetic equation:

N(@O) = Ng®@ [V, ¥, M (2, d ), s (2,d" ) = =d" D N() - B9)
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is given by following formula:

.....

KT + oot k) FDXE, gy (—d"") (3.10)

Corollary 6. 1fd>0,v>0,Ae C\Zy;v,,p; €C;
Rp,;)>0;R(y;)>0;/; € N(j=1,...,r), then
the solution of the following fractional kinetic equation:
N(O) = Ng® [V ¥ i Ms (210)s eonnns (2,0)] = =d oDV N (1) (3.11)

is given by following formula:

.......

Tk et k) DX E,y o (=d'T) (3.12)
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