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INCLINED MHD CASSON FLUID FLOW OVER A 
PERMEABLE CYLINDER WITH VISCOUS DISSIPATION 

AND CHEMICAL REACTION 

Shalini Jain and Manjeet Kumari 

Abstract: In this article, we have investigated inclined MHD Casson fluid flow over a 
permeable cylinder with viscous dissipation and chemical reaction. Variable thermal 
conductivity, non-linear heat source and non-linear radiation is also taken into 
consideration. The PDEs of momentum, heat and mass transfer has been changed into non-
linear coupled ODEs by using suitable transformation. Solved by using R-K forth order 
shooting technique with Matlab. The effects of parameters on the velocity, heat and mass 
transfer are analyzed and presented with the support of graphs and tables. Local Nusselt 
number, local Sherwood number and skin friction coefficient are tabulated. 

Keywords: Inclined magnetic field; Casson fluid; shooting technique; permeable cylinder; 
chemical reaction. 

1. INTRODUCTION 

The Casson fluid is a non-Newtonian fluid with yield stress, which is widely used for 
modelling the blood flow in narrow arteries. Numerous researchers have used the Casson 
fluid model for the mathematical modelling of the blood flow in narrow arteries at low 
shear rates. It has been verified by Mathematicians as well as medical researcher, are 
widely working on Casson nano-fluid model. Mabood et al. [1] investigated effects of 
thermal radiation on Casson flow. Viscous dissipation on MHD Casson fluid flow with 
Cattaneo-Christov heat flux examined by Ramandevi et al. [2]. Ibrahim et al. [3] proposed 
chemical reactive Casson nanofluid over a nonlinear permeable stretching sheet. Reddy et 
al. [4] analysed MHD Casson fluid flow. Malik, et al. examined the boundary layer flow 
of Casson nanofluid. Kumari et al. [5] investigated MHD Casson fluid in an inclined 
channel. Mernone et al. [6] proposed transport phenomena of a Casson fluid. Nadeem et 
al. [7] investigated MHD flow of a Casson fluid. Mahdy [8] examined Casson fluid due to 
a stretching cylinder. Boyd et al. [9] analysed of the Casson and Carreau–Yasuda non-
Newtonian blood models. Kumari, et al. [10] investigated Casson fluid in an inclined 
channel. Sreenadh, et al. [11] examined flow of a Casson fluid. Mukhopadhyay et al. [12] 
studied unsteady Casson fluid flow over stretching surface. Mukhopadhyay [13-14] 
analysed fluid flow over a stretching porous cylinder. 

Mass transfer with chemical reaction is significantly used in chemical and 
hydrometallurgical industries. The formation of smog represents a first order homogeneous 
chemical reaction. A few representative studies dealing with mass transfer in the presence 
of chemical reaction are Hayat et al. [15-16], Salem et al. [17], Bhattacharyya et al. [18], 
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Boundary layer flow 

Alharbi et al. [19] proposed various fluid flow model for heat and mass transfer with 
chemical reaction. 

In the present paper, we discussed the heat and mass transfer analysis of inclined MHD 
Casson fluid flow over a permeable cylinder with viscous dissipation and chemical 
reaction. 

The governing boundary layer equations are first simplified by using suitable similarity 
trans-formations. The resulting equations are solved using R-K forth order with shooting 
technique using MATLAB. Results have been obtained � for Casson fluid parameter, 
Prandtl number, curvature parameter, magnetic parameter, radiation parameter, chemical 
reaction parameter, Schmit number and suction/injection parameter on the velocity, 
temperature and concentration profiles, skin friction, wall temperature gradient and 
concentration gradient have been obtained and tabulated. 

 

 

 

 

 

 

Figure 1: Schematic diagram of boundary layer flow over permeable cylinder 

Table 1 

Pr 

Comparison of '(0)  for different values Pr in the absence of the parameters 

S=R=Ec=M����������������and��  
Nadeem et al 

[22] 
Khan and Pop 

[23] 
Golra and 

Sidawi [24] 
Wang 
[25] 

Narayana et.al 
[28] 

Present study 

0.7 0.454 0.454 0.454 0.454 0.4539 0.453950642 
2.0 0.911 0.911 0.911 0.911 0.9114 0.911361211 

Problem Statement and Mathematical Formulation 

Considered the steady laminar flow of an incompressible non-Newtonian Casson fluid 
caused by a stretching cylinder with radius r in the axial direction in a fluid at rest as shown 
in Figure 1, where the x-axis is measured along the axis of the cylinder and the r-axis is 
measured in the radial direction. It is assumed that the surface of the cylinder is at constant 
temperature Tw and the ambient fluid temperature is T�. The viscous dissipation is 
considered. The continuity, momentum and energy equations are given as: 
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under the boundary conditions 
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Here, stretching velocity 0
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l
 and the 0U : the reference velocity ,l T  and WT : 

respectively the characteristic length, extreme temperature and the wall temperature. On 
expanding T4 in a Taylor series about T  on neglecting higher order term, we get 
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Introduced 
1 1
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 and the similarity transformation for the following 

momentum and temperature equation are defined as. 
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W
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k

T T
 (Reddy [31]), where k : the thermal conductivity at a 

large distance away from the cylinder and  is the small amount of thermal conductivity. 

The equation (2) to (4) using the equation (6) to make a non-dimension form such 
as: 

 2 21
((1 2 ) 2 ) 1 ( sin )f f f f f M Kp f  = 0 (7) 

 24 2
(1 2 ) 1 Pr 2 1 (1 2 )

3 3

R
f R  

 2 1
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 (1 2 ) 2 Sc Kn f  = 0 (9) 

Boundary conditions are given below 

 
, ' 1, 1, 1 at 0

' 0, 0, 0 at

f S f

f
 (10) 

The dimensionless number Pr, �, M, R, Kn, Sc and S are respectively the Prandtl 
number, curvature parameter, magnetic parameter, radiation parameter, chemical reaction 
parameter, Schmit number and suction/injection parameter defined as 
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The skin friction coefficient, local Nusselt number and local Sherwood number are 
defined as: 

 fC  = 
2

1
1 ,w

U
 (11) 
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where the skin friction ,w  the heat flux wq  and mass flux wJ  on the sheet are: 

 w  = 
r R

u

r
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 (15) 

 wJ  = 
0

B
y

C
D

y
 (16) 

The dimensionless expressions for the skin friction coefficient and Nusselt number are 
the following. 

 
1

2Ref xc  = 
1

1 (0)f  (17) 
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where, Rex
Ux

v  : the local Reynolds number. 

2. RESULTS AND DISCUSSION 

Figures 2–26 represent the velocity, temperature and concentration profiles. Figures 2-4 
show the influence of (M) parameter on velocity, heat and concentration profiles. As 
increase the (M) parameter suppress the momentum boundary layer thickness and exactly 
reverse effect have been observed for the heat and concentration profiles. Figures (5-7) 
show the impacts of (Kp) parameter on momentum, temperature and mass profiles. Rising 
the (Kp) parameter suppresses the momentum profile and enhancement the thermal and 
concentration profiles. From Figures (8-10) it is observed that for a non-Newtonian fluids, 
the momentum of fluid as well as the boundary layer thickness of velocity profile decreases 
and temperature and concentration profile increses with the increases in (�) parameter. 
Figures (11-13) show the impacts of (�) parameter on momentum, temperature and mass 
profiles. Rising the (�) parameter suppresses the momentum profile and enhancement the 
thermal and concentration profiles.Figures (14-16) show the impacts of (�) parameter on 
momentum, temperature and mass profiles. Rising the (�) parameter enhance the 
momentum profile, thermal profile and concentration profiles. Fig. 17 shows the influences 
of (Pr��parameter on temperature profile. As increases the (Pr���parameter, the heat profile 
decreases. Figures (18-21) shows the influences of (R), (Ec), (���and (A*) parameters on 
temperature profile. As increases the (R), (Ec), (���and (A*) parameters, the heat profile 
increase. Figures 22-23 show the influence of Kn and Sc parameters on concentration 
profile. As the increase the value of Kn and Sc parameters, concentration boundary layer 
thickness as well as mass profile reduce. Physically, chemical reaction increases the rate 
of interfacial mass transfer. Chemical reaction suppresses the local concentration, thus 
increases its mass gradient and its flux. It is due to the fact that Sc is the ratio of velocity 
to mass diffusivities which means that when Sc increases, mass diffusivity decreases and 
there is a reduction in mass. Figures 24-26 show the impacts of (S) parameter on 
momentum, temperature and concentration profiles. As the increase in the value of (S) 
parameter, suppress the velocity, heat and concentration profiles. Table 1 & 2 show the 
comparison of the present results with the existed results of Mukhopadhyay et al. [20] and 
Palani et al [21], Nadeem et al [22], Khan and Pop [23], Golra and Sidawi[24], Wang [25], 
Anderson et al. [26], Prasad et al. [27] and Narayana et.al [28]. Table 3 shows the effects 
on various parameter on skin friction coefficient, local Nusselt number and local Sherwood 
number. 
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Table 2 

Comparison of f ( 0 )  for different values M in the absence of the parameters 
S=R=Ec=and   

M Anderson et al. 
[26] Prasad et al. [27] Mukhopadhyay et 

al. [20] 
Palani et al 

[21] Present study 

0.0 1.000000 1.000174 1.000173 1.00000 1.000000158 
0.5 1.224900 1.224753 1.224753 1.224745 1.224744871 
1 1.414000 1.414449 1.414450 1.414214 1.414213562 

1.5 1.581000 1.581139 1.581140 1.581139 1.581138830 
2 1.732000 1.732203 1.732203 1.732051 1.732050808 

Table 3 
The skin friction coefficient, local Nusselt number and local Sherwood number are 

following physically parameters 

M Kp    R  A* Pr Kn Sc Cf Nhx Shx 
0.0           -1.64337132 0.04418008 1.81063429 
0.5           -1.80616375 -0.0521564 1.80093555 
1.0           -1.95281012 -0.1415962 1.79253484 

 0.0          -1.75396436 -0.0208626 1.8040049 
 0.5          -1.95281012 -0.1415962 1.7925348 
 1.0          -2.1300973 -0.2516748 1.7827891 
  0.2         -3.7890268 -0.0212150 1.8554443 
  1.0         -2.2290020 -0.0609589 1.8086978 
  2.0         -1.9528101 -0.1415962 1.7925348 
   0.0        -1.6433713 0.0441800 1.8106342 
   π/6        -1.7539643 -0.0208626 1.8040049 
   π/3        -1.9528101 -0.1415962 1.7925348 
    0.0       -2.1040496 0.1280642 1.9955030 
    0.05       -2.0234140 -0.0911752 1.8857343 
    0.1       -1.9528101 -0.1415962 1.7925348 
     0.0       0.1060117  
     1.0       -0.1415962  
     2.0       -0.2152368  
      0.0      -0.1339157  
      0.2      -0.1484248  
      0.4      -0.1595413  
       0.0     0.0111134  
       0.2     -0.1415962  
       0.4     -0.2943349  
        2.0    0.6543588  
        3.0    1.0683478  
        4.0    1.4081367  
         0.0    1.4268273 
         0.2    1.5878501 
         0.5    1.7925348 
          1.0   1.1260574 
          2.0   1.7925348 
          3.0   2.3817100 
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Figure 2: Impact of M on f ’ profile 

 

Figure 3: Impact of M on  profile 
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Figure 4: Impact of M on  profile 

 

Figure 5: Impact of Kp on f ’ profile 
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Figure 6: Impact of Kp on  profile 

 

Figure 7: Impact of Kp on  profile 
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Figure 8: Impact of  on f ’ profile 

 

Figure 9: Impact of  on  profile 
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Figure 10: Impact of  on  profile 

 

Figure 11: Impact of  on f ’ profile 
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Figure 12: Impact of  on  profile 

 

Figure 13: Impact of  on  profile 
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Figure 14: Impact of  on f ’ profile 

 

Figure 15: Impact of  on  profile 
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Figure 16: Impact of  on  profile 

 

Figure 17: Impact of Pr on  profile 
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Figure 18: Impact of R on  profile 

 

Figure 19: Impact of Ec on  profile 
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Figure 20: Impact of  on  profile 

 

Figure 21: Impact of A* on  profile 
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Figure 22: Impact of Sc on  profile 

 

Figure 23: Impact of Kp on  profile 
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Figure 24: Impact of S on f ' profile 

 

Figure 25: Impact of S on  profile 
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Figure 26: Impact of S on  profile 

3. CONCLUSION 
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� Increases the value of (Sc) and (Kn), suppress mass flux as well as concentration 
profile. 

� Increases the value of (�) rises momentum boundary layer thickness, heat flux as 
well as temperature profile and concentration profile. 

It is observed that the skin-friction increases whereas local Nusselt number and local 
Sherwood number decreases as the value of (�) increases. 

� Skin-friction, local Nusselt number and local Sherwood number decreases as the 
value of (M) and (Kp) increases. 
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