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EDGE ANTIMAGIC LABELING OF N COPIES OF
GENERALIZED PETERSEN GRAPHS

J. JOY PRISCILLA AND R. SATTANATHAN

ABSTRACT: Let G = (V, E) be a simple graph with v vertices and e edges. An (a, d)-edge
antimagic total labeling of G is a bijection f : V � E � {1, 2, …, v + e} so that the set of
edge weights of all edges in G is {a, a + d, a + 2d, … a + (e – 1)

 
d} where a, d are two

fixed positive integers and G is called edge antimagic total (EAT).

f is called super (a, d)-edge antimagic labeling if f
 
(V ) = {1, 2, …, v} and in that case G is

called super edge antimagic total (SEAT).

In this paper we study the edge antimagic labeling of N copies of generalized Petersen graphs.
A generalized Petersen graph P

 
(n, m), n � 3, 1 � m < 

2
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) for all i � {1, 2, …, n}, where

the subscripts are taken modulo n. P
 
(5, 2) is the standard Petersen graph.
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1. INTRODUCTION

A very popular concept of Graph theory is the concept of labeling of graphs which was
introduced in the late 1960’s. Graph labeling is an assignment of integers to the vertices
or edges or both under certain conditions. A detailed survey of graph labelings is given
in [2]. In this paper, we study the edge antimagic labeling of N copies of Generalized
Petersen graphs where N is a finite positive integer. Magic labeling is treated as very
important among other labelings since many graph – theoretic properties of some graphs
can be studied by investigating their magic properties. They also play a vital role in
Wireless networks, Circuit designs, Radars, etc.

Definition 1: Let G = (V, E) be a simple graph with v vertices and e edges. An
(a, d)-edge antimagic total labeling of G is a bijection f : V � E � {1, 2, …, v + e} so
that the set of edge weights of all edges in G is {a, a + d, a + 2d,…, a + (e – 1)

 
d} where

a, d are two fixed positive integers and G is called edge antimagic total (EAT).

 f is called super (a, d)-edge antimagic labeling if f (V ) = {1, 2, …, v} and in that
case G is called super edge antimagic total (SEAT). Many results in edge antimagic
labelings can be seen in [3] and [5].

Definition 2: Let G = (V, E) be a simple graph with v vertices and e edges. Consider
NG, the N copies of G where N is a finite positive integer. A bijection g :V (NG) � E (NG)
� {1, 2, …, N (v + e)} is called copywise (a

t
, d)-edge antimagic total labeling if each
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of the t th copy of NG becomes (a
t
, d)-edge antimagic total separately for t = 1, 2, …, N

and NG is called copywise (a
t
, d)-edge antimagic total.

Definition 3: A generalized Petersen graph P
 
(n, m), n � 3, 1 � m < 2

n  is a 3-regular
graph with 2n vertices u1, u2,…u

n
, v1, v2,…v

n
 and edges (ui, vi), (ui

, u
i + 1), (vi

,, v
i + m) for

all i � {1, 2, …, n}, where the subscripts are taken modulo n.

In [4] we can get (a, d)-edge antimagic labeling of generalized Petersen graphs.

2. EDGE ANTIMAGIC LABELING OF NP (n, m)

Theorem 1: Every generalized Petersen graph P (n, m), n � 3, 1 � m < 2
n  has a super

(4n + 2, 1)-edge antimagic total labeling.

Proof: Consider G = (V, E) = P
 
(n, m) with v = 2n vertices and e =3n edges where

n � 3, 1 � m < 2
n . Define f : V � E � {1, 2, …, v + e = 5n} as follows:
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Then the edge weights of P
 
(n, m) are given by
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Thus the set of edge weights is given by W1 � W2 � W3 = {4n + 2, 4n + 3, …, 5n,
5n + 1, … 6n, 6n + 1, …, 7n, 7n + 1} which gives an (4n + 2, 1)-edge antimagic total
labeling.

Theorem 2: For n � 3 and 1 � m < 2
n , NP

 
(n, m) is copywise edge antimagic total

where the tth copy of NP
 
(n, m) has a (n (5N + 5t – 6) + 2, 1)-edge antimagic total labeling.

Proof: Consider the labeling f given in theorem 1.Then the labeling gt : V (NP
 
(n, m))

� E (NP (n, m)) � {1, 2, …, 5Nn} for the t th graph (copy) of NP
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Theorem 3: For odd n, n � 3, every generalized Petersen graph P (n, 1) has a

� �9 5
2 , 2n � -edge antimagic total labeling.

Proof: Consider the labeling f :V � E � {1, 2, …, 5n} such that

f
 
(u

i
) =

1
(2 2 ), for 0 (mod 2)

2
1

(3 2 ), for 1 (mod 2),
2

1, for

n i i

n i i i n

n i n

� � � ��
�
� � � � ��
�

� ��

f
 
(v

i
) =

1
(7 3 ), for 0 (mod 2), 1

2
1

(6 3 ), for 1 (mod 2),
2
3 1, for 1

n i i i n

n i i

n i n

� � � � � ��
�
� � � ��
�

� � ��

It can be easily verified that the set of edge weights of the t th graph (copy) is given
by E

t
 = {n (5N + 5t – 6) + 2, n (5N + 5t – 6) + 3, …, n (5N + 5t – 3) + 1}, (i.e) each of the

t th copy of NP (n, m) has a (n (5N + 5t – 6) + 2, 1)-edge antimagic total labeling. Hence
NP (n, m) is copywise edge antimagic total.

Example: Copywise edge antimagic total labeling of 5 P (3, 1)

E
1
 = {74, 75, …, 82} E

2
 = {89, 90, …, 97} E

3
 = {104, 105, …, 112}

E
4
 = {119, 120,… , 127} E

5
 = {134, 135, …, 142}
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It can be easily verified that under this labeling f the set of edge-weights of P (n, 1)

is given by � �9 5 9 5 21 1
2 2 2, 2, ...n n n� � �� .

Theorem 4: For odd n, n � 3, NP(n, 1) is copywise edge antimagic total where the

tth copy of NP(n,1) has a � �(10 10 11) 5
2 , 2N t n� � � -edge antimagic total labeling.

Proof: Consider the labeling f for P (n, 1) given in theorem 3. Then define the
labeling gt for the t th graph (copy) of NP

 
(n, 1) as given in theorem 2 using this f.

 It can be easily verified that the set of edge weights of the t th graph (copy) is given

by � �(10 10 11) 5 (10 10 11) 5 (10 10 1) 1
2 2 2, 2, ...N t n N t n N t n

tE � � � � � � � � �� �  (i.e) each of the tth

copy of NP
 
(n, 1) has a � �(10 10 11) 5

2 , 2N t n� � � -edge antimagic total labeling. Hence
NP(n,1) is copywise edge antimagic total.

Example: Copywise edge antimagic total labeling of 3 P (5, 1)

E
1
 = {75, 77, …, 103} E

2
 = {100, 102, …, 128} E

3
 = {125, 127, …, 153}

Theorem 5 For odd n, n � 3, every generalized Petersen graph P
 
(n, 2) has a

� �9 5
2 , 2n � -edge antimagic total labeling.
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Proof: Define f : V � E � {1, 2, …, v + e = 5n} as follows:
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Case 1: For n � 1 (mod 4)
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Case 2: For n � 3 (mod 4)
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The set of edge-weights of P (n, 2) is given by � �9 5 9 5 21 1
2 2 2, 2, ...n n n� � �� .

Thus P (n, 2) has a � �9 5
2 , 2n � -edge antimagic total labeling.

Theorem 6: For odd n, n � 3, NP (n, 2) is copywise edge antimagic total where the

tth copy of NP
 
(n, 2) has a � �(10 10 11) 5

2 , 2N t n� � � -edge antimagic total labeling.

Proof: Construct the labeling gt for the t th graph (copy) of NP
 
(n, 2) same way as in

theorem 2 by using the labeling f of theorem 5.

Then the set of edge weights of the t th copy of NP
 
(n, 2) is given by

� �(10 10 11) 5 (10 10 11) 5 (10 10 1) 1
2 2 2, 2,...N t n N t n N t n

tE � � � � � � � � �� �  (i.e) each of the t th copy of

NP
 
(n, 1) has a � �(10 10 11) 5

2 , 2N t n� � � -edge antimagic total labeling. Hence NP
 
(n, 2) is

copywise edge antimagic total.
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Example: Copywise edge antimagic total labeling of 4 P (7, 2)

3. CONCLUSION

In this paper we have discussed about edge antimagic labelings of N copies of generalized
Petersen graphs which are isomorphic to each other. In the case of non isomorphic
disconnected graphs still the problem of constructing edge antimagic labelings remains
open. Some more open problems in this area are given in [1].
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