RECOGNITION OF URDU CHARACTER WITH HMM TECHNIQUE

Yunus Khan and Devendra Singh Kaushal

1 M. Tech. Researcher, JIT, Borawan, Khargone, India, E-mail: callyunuskhan@gmail.com
2 M. Tech. Researcher, SATI Vidisha, Vidisha, India, E-mail: devendrasinghkaushal@gmail.com

Abstract: This paper deals with an Optical Character Recognition system for printed Urdu, a popular Pakistani/Indian script and is the third largest understandable language in the world, especially in the subcontinent but fewer efforts are made to make it understandable to computers. Lot of work has been done in the field of literature and Islamic studies in Urdu, which has to be computerized. Research has been carried out for years to automate Arabic and Urdu script. But the biggest hurdle in the development of Urdu OCR is the challenge to recognize Nastalique Script which is taken as standard for writing Urdu language. Nastalique script is written diagonally with no fixed baseline which makes the script somewhat complex. Overlap is present not only in characters but in the ligatures as well. This paper proposes a method which allows successful recognition of Nastalique Script.

Keywords: HMM, Image processing; Optical Character Recognition; Urdu OCR;

I. INTRODUCTION

The text within the image is non-editable. Due to this non-editable nature of text, information retrieval, collection and sharing become a big issue. So we need a mechanism to convert this text image into machine editable text form. OCR (Optical character recognition) helps to convert the text image such as scanned document, electronic fax files, and picture of document taken from cameras into text file that can be opened in any word processor or text editor.

The process of OCR can be divided into three main processes [1] (1) Preprocessing (2) Recognition (3) Post Processing Different preprocessing techniques are applied to extract noise and distortion free image. The text areas are extracted and fed to different classifiers for recognition. The result of classifiers is significantly improved in the last step of post processing.

II. URDU WRITING SYSTEM

Urdu is the national language. Urdu is bidirectional as words are written right to left where numbers are written left to right as shown below [2].

Figure 1: Bidirectional Urdu Script

Figure 2: Urdu (a) Character Set and (b) Diacritical Marks

(A) Nastalique Script

Nastalique is a combination of two different fonts, Naskh and Taleeq. It was initially created by Mir Ali Tabrezi. The calligrapher tends to increase the beauty...
of the script and making it a complex script. It is highly
cursive and context sensitive in nature. Some of the
characteristics are as follows:

1. It is written diagonally from top right to bottom
left. That means all the ligatures are tilted at a certain
angle towards the right side as shown below. Due to
this diagonal nature the nastalique consumes less
horizontal space as compared to Nask.

2. The joins are formed by cusp-like shapes, which
are concave upwards and have their initial end higher
than the final end [2].

3. Overlapping problem is present in characters and
ligatures [2]. For example kaf of the word “kisam” is
overlapping “meem” of tamam.

4. Context Sensitive nature of nastalique compels
the letters to adapt different shapes [6]. Following
figures are taken from [2]

III. METHODOLOGY

Mostly the work that is available today is on Arabic
OCR. Little effort has been made on Urdu OCR and
especially on Nastalique Urdu OCR [17, 18, 19, 20,
21, and 22]. The cursive and context sensitive nature
of the script complicates the situation even further.

For recognizing cursive script, there are two main
approaches to deal with connected characters in a word.

1. Segmentation based Approach
2. Segmentation free Approach

Due to highly cursive nature the segmentation of
Urdu script is not a trivial task. So we will discuss
segmentation free approach in which the ligature as a
whole is used instead of segmenting it into smaller
units. Different pattern matching techniques are used
to classify the pattern. Most commonly used method
in this approach is to extract features from the image
and feed them to some recognizer for identification
purpose. Three types of features are normally extracted
which are transformational [7, 8], statistical [9, 10, 15]
and structural [13].

In our research, we extracted global
transformational features from a non segmented
ligature and then fed them to Hidden Markov Model
(HMM) recognizer. HMM has an ability to perform
recognition with great ease and efficiency. Language
independent training and recognition methodology was
a major reason of using HMM in developing
Tool Kit (HTK) [12] is used to implement HMM. The Process of HMM recognition is divided into two tasks.

1. Training
2. Recognition

(A) Training
Before starting the recognition process, the system is properly trained on each unique HMM (training data) [16]. Each connected body is considered as a separate HMM. Connected body may be a diacritic or a main body. A separate recognizer for diacritics and main bodies are built. Diacritic Recognizer is trained on one dot, two dots, three dots, Shad, Mad, Secondary Stroke of hey, Secondary Stroke of gaf, Khari Zabar, Do Zabar, Hamza and small toey. Main Body Recognizer is trained on 1500 high frequency ligatures which vary from one character ligature to seven characters ligature.

In order to cater all sorts of noise and variations in the image we need to collect at least 30 samples of each HMM model. The figure below gives the overall flow of the process.

(B) Recognition
Once all the models are properly trained, the system is ready for recognition. The overall flow of recognition process is given in the figure below. After separating and re-associating the diacritics and main body, each connected body is further divided into small chunks/windows called frames. The discrete cosine Transform

Table II
HMM Models for Main Body Recognizer

<table>
<thead>
<tr>
<th>h022</th>
<th>h0366</th>
<th>h0429</th>
</tr>
</thead>
</table>

For main body Recognizer not only the HMM models are trained but a lexicon is also maintained at the time of training which tells about all the character classes within each model. Entry for each HMM model is incorporated in the lexicon.
(DCT) is calculated for each frame and then fed to HMM recognizer. The information regarding the location of the diacritic is also stored which will be in the recognition phase.

Diacritics are divided into vertical windows of size 9x25 whereas main body is divided into vertical windows of size 8x90. 1 bits are padded to complete the window. The direction of frame traversal is from right to left as shown below. Let’s take an example of the Urdu letter “١” and see how framing is done for its diacritic and main body.

![Figure 8: Framing in Main Body and Diacritic](image)

(C) Feature Matrix

Once the diacritics are recognized, feature vector is prepared according to the information of diacritics. If no diacritic is present then the vector is ‘0’. If the diacritics are present then after recognizing them we make the vector.

For example the feature matrix for the ligature “١٢” is give as below.

Feature Matrix

| | 14 | 16 | 02 | 01 |

(D) Recognizing the Ligature

After recognizing the main body, the already developed lexicon is used to identify the classes of the characters with in the ligature. Once the classes are identified, next step is to exact characters within the ligature. For this purpose rule based recognizer is used. Feature matrix along with the identified classes is fed to rule based recognizer which then correctly recognizes the ligature.

Let’s take an example of the following ligature and see how it is recognized.

![Figure 9: Ligature to be Recognized](image)

First of all diacritics and main bodies will be separated and location of both the diacritics is store. The first single dot is marked as middle and two dots as above. Then main body and all the diacritics are sent to their respective recognizer.

![Figure 10: Diacritics Separated from Main Body](image)

Main body recognizer will give us h061 as the identified model; similarly output of diacritic recognizer will be h01 and h02. These HMM numbers tell us the type of the pattern recognized. h01 and h02 tell that diacritic (1) is one dot and diacritic (2) is two dots respectively. Model h061 of main body tells that it is six characters word with the following classes.

١٢٣٤٥٦٧٨٩ ١٢٣٤٥٦٧٨٩ ١٢٣٤٥٦٧٨٩ ١٢٣٤٥٦٧٨٩ ١٢٣٤٥٦٧٨٩ ١٢٣٤٥٦٧٨٩

Next step is to prepare a feature vector. It has one dot in the middle and two dots above so the feature vector will look like the following.

Feature Matrix

| | 16 | 02 |

١٢٣٤٥٦٧٨٩ ١٢٣٤٥٦٧٨٩ ١٢٣٤٥٦٧٨٩ ١٢٣٤٥٦٧٨٩ ١٢٣٤٥٦٧٨٩ ١٢٣٤٥٦٧٨٩
Then the Unicode for all these characters are written in the text file such that a ligature is formed.

IV. RESULT

A total of 1282 unique ligatures are extracted from the 5000 high frequency words in a corpus-based dictionary [14]. It is also confirmed that all Urdu letters are used in these ligatures in a variety of contexts. For analysis purpose three or more samples of each ligature are taken to form the text. These pages are printed in Noori Nastalique font at font size 36. The pages are then scanned at dpi 150 and then separated back into ligatures. A total of 3655 ligatures are tested and 3375 ligatures are accurately identified, giving an accuracy of 92%.

V. CONCLUSION

The Nastalique script is complex due to its context sensitive and cursive nature. The absence of baseline and complex mark placement rules makes the situation even more worst. So the extraction of Nastalique text from the image is not a trivial task. The algorithm has been developed which successfully extracts the texts with an accuracy of 92%.

References

