Hierarchical Sequence Clustering Algorithm for Data Mining

V. Umadevi CHEZHIAN¹, Jeya CELIN² and S. GEETHA³

¹Department of Computer Science, College of Business and Economics, State of Eritrea
Email: yazh1999@gmail.com
²Eritrea Institute of Technology, State of Eritrea, E-mail: jeyacelin@yahoo.co
³Anna University Trichirapalli, Trichirapalli, E-mail: kasagee1971@yahoo.co.in

Abstract: Bioinformatics emerged as a challenging new area of research and brought forth numerous computational problems. Here computers are used to gather, store, analyze and merge biological data. In this paper, the problem of clustering interval-scaled data and sequence data is analyzed in a new approach using Hierarchical Sequence Clustering. In Sequence clustering, it is necessary to find the similarity or distance between each pair of sequences. To find the similarity between sequences the data structure Probabilistic Suffix Tree can be used. An agglomerative algorithm is introduced based on UPGMA (Un weighted Pair wise Group Average Method) cluster analysis, that required \(O(n^3) \) of total computing time. Then a new algorithm using the new approach is introduced with \(O(n^2) \) computing time. The result of this new algorithm is compared with UPGMA cluster analysis.

Key words: Data Mining, Hierarchical Clustering, Sequence Clustering, Probabilistic Suffix Tree, UPMGA.

1. INTRODUCTION

Cluster analysis has received renewed attention within the last 10 years as a field of study within knowledge discovery and data mining. The massive amount of data that have become available in a variety of fields have prompted new research in the use of traditional clustering algorithms and the development of new algorithms [1].

The studies of sequential pattern mining have been extended in several different ways [2] considered frequent episodes in sequences, where episodes are essentially acyclic graphs of events whose edges specify the temporal before-and-after relationship but without timing-interval restrictions. Sequence pattern mining for plan failures was proposed by [3] [4] proposed the use of regular expressions as a flexible constraint specification tool that enables user-controlled focus to be incorporated into the sequential pattern mining process. The embedding of multidimensional, multilevel information into a transformed sequence database for sequential pattern mining was proposed by [5] [6] studied issues regarding constraint-based sequential pattern mining. CLUSEQ is a sequence clustering algorithm, developed by [7]. An incremental sequential pattern mining algorithm, IncSpan, was proposed by [8]. SeqIndex, efficient sequence indexing by frequent and discriminative analysis of sequential patterns, was studied by [9]. A method for parallel mining of closed sequential patterns was proposed by [10]. [7] proposed a new efficient incremental clustering algorithm using weighted distance metric.

A PST is considered to have a enhanced memory efficient representation than the PSA (Probabilistic Suffix Automata). Since then, it has been used in several domains as an efficient approach for classifying sequences [16] [17].

Schurmann and [18] proposed a suffix tree construction method with expected time complexity \(O(n \log n) \) and it is well suited for the construction of large suffix trees in bioinformatics and other applications, as long as the main memory size is
six times as big as the sequence length. Another suffix tree construction algorithm over a wide spectrum of data sources and sizes proposed by [19] [20] constructed a PST that represents the probability of each system call given a finite-length sequence of previously observed system calls.

A PST is considered to have an enhanced memory efficient representation than the PSA (Probabilistic Suffix Automata). Since then, it has been used in several domains as an efficient approach for classifying sequences.

In Sequence clustering, it is necessary to find the similarity or distance between each pair of sequences. To find the similarity between sequences the data structure Probabilistic Suffix Tree can be used [21] [22] [23] proposed an algorithm to construct a Suffix Tree for a string of length n, in O(n) time.

2. SEQUENCE CLUSTERING

Let $\mathcal{S} = \{s_1, s_2, \ldots, s_n\}$ be the set of all possible symbols. A sequence is an ordered list of symbols in \mathcal{S}. The number of symbols in a sequence is referred to as the length of the sequence. Given a sequence, a segment is defined as a consecutive position of the sequence. For example, ‘bcd’ is a segment of ‘abcdef’ while ‘abd’ is not. Conventionally, we use the term ‘sequence’ to refer to a whole symbol sequence in the databases while the term ‘segment’ is used to denote a portion of some sequence. A sequence database is a set of sequences. Given a sequence database our objective is to categorize these sequences into clusters according to their sequential similarities.

Schurmann and Stoye (2006) proposed a suffix tree construction method with expected time complexity $O(n \log n)$ and it is well suited for the construction of large suffix trees in bioinformatics and other applications, as long as the main memory size is six times as big as the sequence length. Another suffix tree construction algorithm over a wide spectrum of data sources and sizes proposed by Tata et al. (2004). Mazeroff et al. (2003) constructed a PST that represents the probability of each system call given a finite-length sequence of previously observed system calls.

3. UPGMA ALGORITHM

Given a set of n objects and each having number of characteristics (attributes)

1. Find Euclidean distances $d(i,j)$ for all $1 \leq i, j \leq n$ and $i \neq j$
2. Form the dissimilarity matrix D.
3. Repeat step 4 to step 7 $n-1$ times.
4. Find the minimum value in the lower triangular of D Matrix and let the corresponding row and column be t_1 and t_2 respectively.
5. $a = \text{count}(\text{objects}(t_1))$
 $b = \text{count}(\text{objects}(t_2))$
 $r = a + b$
6. Rearrange the elements as:
 For each object i other than t_1 and t_2
 $d(i,t_2) = \frac{a}{r} \cdot d(t_2,i) + \frac{b}{r} \cdot d(t_1,i)$
 $d(t_2,i) = d(i,t_2)$
 $d(i,t_1) = -1$
 $d(t_1,i) = -1$
7. concatenate object(t2),object(t1)

In the 4th step, consider only the lower triangular matrix for finding the minimum, and the corresponding row value is stored in t_1 and the corresponding column value is stored in t_2. In the next step, count the number of objects in t_1 and t_2. In the first time it will be 1 for t_1 and t_2. Thus $a=1$, $b=1$, and $r=2$. In the 6th step, the value of row and column corresponding to t_1 is set to -1, and the values of row and column corresponding to t_2 is equal to $a/r \cdot d(t_2,i) + b/r \cdot d(t_1,i)$. In the next step, the names of objects t_2 and t_1 are concatenated and the resultant value is stored in t_2. In the next iteration suppose the minimum is found in row, with row value t_2, the new t_1 is t_2 and the number of objects in t_1 is now 2, i.e $a=2$. After $n-1$ iteration all become a single cluster.

4. COMPUTATIONAL STUDY

For constructing dissimilarity matrix D, it requires $O(n^3)$ computing time. Instead of computing dissimilarity matrix D, we can also find similarity matrix. In this case, find the maximum instead of minimum in the 4th step. To find the minimum in step 4, the algorithm considers only the lower triangular matrix. So it needs $O(nc)$. Otherwise it requires $O(n^2)$ of time. For rearranging the matrix elements in step 6 require $O(n)$. Since the steps 4 to 7 are repeated utmost $(n-1)$ times, the total computation time is utmost $O(n^3)$.

The following table (1) shows the computing time in seconds when ‘n’ varies.
Hierarchical Sequence Clustering Algorithm for Data Mining

5. NEW APPROACH BASED ON PST

The new algorithm is introduced to partition the object into group of clusters by using a new approach. The idea is: the algorithm starts with the choosing of two distantly related objects as a seed point. Let there be two clusters. Then it scans each object and for every object checks the distance between this object with the seeds. The object should be held into one of the clusters whose distance is minimum and it should be less than the calculated threshold \([<= \text{the average of all distances}]\), and if otherwise marked that object as uncluster. The threshold is computed at the creation of each cluster \([\text{average distance metrics for all unclustered objects}]\). Then scan all unclustered objects and choose one object as a next seed which has the maximum distance for all existing clusters. This process should be continued until there is no more object to be clustered.

In a particular iteration, after selecting the new seed point, if no objects are grouped into that cluster, then that seed point can be detected as an outlier. That means this new seed point is very distantly related to all other objects. So the proposed algorithm is also used to detect the outliers.

6. ALGORITHM

Input: set of \(n\) objects and its distance with other objects (distance matrix)

Output: Cluster of objects

Find Threshold \(T\): Sum of distance value between each pair of unclustered objects (initially all objects are unclustered) in the distance matrix divided by count. \([\text{Average of distant metrics}]\)

Cluster Formation: Let \(X\) be the set of all objects.

Step 1: Choose two objects from \(X\) which has the maximum distance in the distance matrix. These two objects are the seed points of two initial clusters.

Delete these two objects from \(X\).

Step 2: \(Uc = X / / Uc\) = set of un clustered objects

For each object in \(X\),

Search among the existing cluster seed points, with which if the distance is minimum and if it is also less than \(T\), then place the object in the corresponding cluster \([\text{and remove this object from } Uc]\), otherwise mark this object as uncluster \([\text{do not remove this object from } Uc]\).

Step 3: For each object in \(Uc\)

Choose an object as a seed point of next cluster which is having maximum distance with more number of existing cluster seed points.

Remove that object from \(X\).

Step 4: Repeat step 2 and step 3 until no more objects in \(Uc\).

7. TIME COMPLEXITY

Finding Threshold \(T\) takes \(O(n^2)\) at the maximum (if we consider only either upper or lower triangular matrix it will take only \(nc^2\) time).

For cluster formation, step 1 again takes \(O(n^2)\) [or \(nc^2\)] time in order to find the maximum distant value for initial seed point selection. Step 2 takes \(O(n \times 2)\) for the first time and \(O(n \times 3)\) for the second and so on, and finally it will take \(O(n \times k)\), where \(n\) is the number of objects and \(k\) is the number of clusters that we will get. Step 3 takes \(O(p)\), where \(p\) is the number of unclustered objects in that time. Thus the total computing time is \(O(n^2)+O(nk)+O(p)\). In general the proposed algorithm takes \(O(n^2)\) at the maximum.

8. COMPARISON ANALYSIS

Unclustered objects are \(B\) and \(F\).

Here \(F\) has the highest distance for both the seeds. So choose the next seed as \(F\).

<table>
<thead>
<tr>
<th>E</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>d(A,E)</td>
<td>d(A,D)=5</td>
<td>d(A,F)=7</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>d(B,E)=7</td>
<td>d(B,D)=8</td>
<td>d(B,F)=1</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>d(C,E)=10</td>
<td>d(C,D)=5</td>
<td>d(C,F)=2</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>d(G,E)=4</td>
<td>d(G,D)=5</td>
<td>d(G,F)=2</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>G</td>
</tr>
</tbody>
</table>

Now the three clusters are:

\[\{A,E\} \{D\} \{F,B,C,G\}\]
Repeat this process until no more objects are marked as unclustered. UPGMA clustering algorithm works as follows:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>12</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>0</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>1</td>
<td>11</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Here minimum value is 1, so that corresponding objects B and F are closely related and hence that objects are merged into a cluster. Then the distance metrics are changed as per the formula.

Here the minimum value is 4.25. Now {C,G} and {B,F} clusters are merged.

Now it will become

<table>
<thead>
<tr>
<th></th>
<th>{A,E}</th>
<th>{B,F}</th>
<th>{C,G}</th>
<th>{D}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>{B,F}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>{B,F}</td>
<td>{C,G}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.5</td>
<td>4.5</td>
<td>9.5</td>
<td>8</td>
</tr>
<tr>
<td>D</td>
<td>5.5</td>
<td>4.25</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Now the minimum value is 3, so choose the corresponding objects C and G and merge these two objects. Then the distance metrics are changed as per the formula (1).

Now minimum value is 4.25. Now {C,G} and {B,F} clusters are merged.

Now it will become

<table>
<thead>
<tr>
<th></th>
<th>{A,E}</th>
<th>{B,F}</th>
<th>{C,G}</th>
<th>{D}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>{B,F}</td>
<td>{C,G}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>{B,F}</td>
<td>{C,G}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.5</td>
<td>4.5</td>
<td>9.5</td>
<td>8</td>
</tr>
<tr>
<td>D</td>
<td>5.5</td>
<td>4.25</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Now minimum value is 3, so that corresponding objects B and F are closely related and hence that objects are merged into a cluster. Then the distance metrics are changed as per the formula (1).

Now the minimum value is 4.25. Now {C,G} and {B,F} clusters are merged.

Now it will become

<table>
<thead>
<tr>
<th></th>
<th>{A,E}</th>
<th>{B,F}</th>
<th>{C,G}</th>
<th>{D}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>{B,F}</td>
<td>{C,G}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>{B,F}</td>
<td>{C,G}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.5</td>
<td>4.5</td>
<td>9.5</td>
<td>8</td>
</tr>
<tr>
<td>D</td>
<td>5.5</td>
<td>4.25</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

The UPGMA clustering algorithm proceeds in this way until all the objects belong to one cluster. When it is stopped here, the result (B) is the same as (A) which we got using the new algorithm.

9. CONCLUSION

The new algorithm was introduced, to get the partitioned clustering in hierarchical approach. Initially, two objects were chosen (based on their distance metrics or similarity) as seed points and two clusters were obtained. At each successive iterations, the correct object was chosen as a new seed point to increase the cluster quality so that, the number of cluster increased by one. The algorithm terminates if no more objects to be clustered. Also, the result obtained from the proposed algorithm is proved with the most popular clustering algorithm called UPGMA. The UPGMA method required O(n^3) of computing time but the proposed algorithm required only O(n^2) of computing time. Also, the newly developed algorithm can be used to detect the outliers.

REFERENCE

