THE FORCING EDGE-TO-VERTEX DETOUR NUMBER OF A GRAPH

A. P. Santhakumaran & S. Athisayanathan

Abstract: For two vertices \(u \) and \(v \) in a graph \(G = (V, E) \), the detour distance \(D(u, v) \) is the length of a longest \(u - v \) path in \(G \). A \(u - v \) path of length \(D(u, v) \) is called a \(u - v \) detour. For subsets \(A \) and \(B \) of \(V \), the detour distance \(D(A, B) \) is defined as \(D(A, B) = \min \{ D(x, y) : x \in A, y \in B \} \). A \(u - v \) path of length \(D(A, B) \) is called an \(A - B \) detour if \(x \) is a vertex of an \(A - B \) detour. A set \(S \subseteq E \) is called an edge-to-vertex detour set if every vertex of \(G \) is incident with an edge of \(S \) or lies on a detour joining a pair of edges of \(S \). The edge-to-vertex detour number \(dn^2(G) \) of \(G \) is the minimum order of its edge-to-vertex detour sets and any edge-to-vertex detour set of order \(dn^2(G) \) is an edge-to-vertex detour basis of \(G \). A subset \(T \) of an edge-to-vertex detour basis \(S \) is called a forcing subset for \(S \) if \(S \) is the minimum forcing subset of \(S \). The forcing edge-to-vertex detour number of \(S \), denoted by \(fdn^2(S) \), is the cardinality of a minimum forcing subset for \(S \). The forcing edge-to-vertex detour number of \(G \), denoted by \(fdn^2(G) \), is \(fdn^2(G) = \min \{ fdn^2(S) \} \), where the minimum is taken over all edge-to-vertex detour bases \(S \) in \(G \). The forcing edge-to-vertex detour numbers of certain standard graphs are obtained. It is shown that for every pair \(a, b \) of integers with \(0 \leq a \leq b \) and \(b \geq 2 \) there exists a connected graph \(G \) with \(fdn^2(G) = a \) and \(dn^2(G) = b \).

AMS Subject Classification: 05C12.

Keywords: Detour, Edge-to-vertex detour set, Edge-to-vertex detour basis, Edge-to-vertex detour number, Forcing edge-to-vertex detour number.

1. INTRODUCTION

By a graph \(G = (V, E) \) we mean a finite undirected graph without loops or multiple edges. The order and size of \(G \) are denoted by \(p \) and \(q \) respectively. We consider connected graphs with at least two vertices. For basic definitions and terminologies we refer to [1, 5]. For vertices \(u \) and \(v \) in a connected graph \(G \), the detour distance \(D(u, v) \) is the length of a longest \(u - v \) path in \(G \). A \(u - v \) path of length \(D(u, v) \) is called a \(u - v \) detour. It is known that the detour distance is a metric on the vertex set \(V \). The detour distance was studied in [2, 4].

A vertex \(x \) is said to lie on a \(u - v \) detour \(P \) if \(x \) is a vertex of \(P \) including the vertices \(u \) and \(v \). A set \(S \subseteq V \) is called a detour set if every vertex \(v \) in \(G \) lies on a detour joining a pair of vertices of \(S \). The detour number \(dn(G) \) of \(G \) is the minimum order of a detour set and any detour set of order \(dn(G) \) is called a detour basis of \(G \). These concepts were studied in [3]. The detour concepts and colorings are widely
Definition 1.1: ([6]) Let $G = (V, E)$ be a connected graph with at least two vertices. A set $S \subseteq V$ is called a weak edge detour set of G if every edge in G has both its ends in S or it lies on a detour joining a pair of vertices of S. The weak edge detour number $dn_w(G)$ of G is the minimum order of its weak edge detour sets and any weak edge detour set of order $dn_w(G)$ is called a weak edge detour basis of G.

Example 1.2: For the graph G given in Fig. 1.1, it is clear that the set $S = \{v_1, v_2\}$ is a weak edge detour basis of G so that $dn_w(G) = 2$. For the graph G given in Fig. 1.2, it is clear that no two element subset of V is a weak edge detour set of G. The set $S = \{v_1, v_2, v_3\}$ is a weak edge detour basis of G so that $dn_w(G) = 3$. The set $S_1 = \{v_1, v_4, v_5\}$ is another weak edge detour basis of G.
Definition 1.3: ([7]) Let $G = (V, E)$ be a connected graph with at least two vertices. A set $S \subseteq V$ is called an edge detour set of G if every edge in G lies on a detour joining a pair of vertices of S. The edge detour number $dn_1(G)$ of G is the minimum order of its edge detour sets and any edge detour set of order $dn_1(G)$ is called an edge detour basis of G. A graph G is called an edge detour graph if it has an edge detour set.

Example 1.4: For the graph G given in Fig. 1.2, it is clear that no two element subset of V is an edge detour set of G. The set $S = \{v_1, v_4, v_5\}$ is an edge detour basis of G so that $dn_1(G) = 3$ and hence it is an edge detour graph. But the graph G given in Fig. 1.1 is not an edge detour graph.

Definition 1.5: [10] Let $G = (V, E)$ be a connected graph with at least three vertices. For subsets A and B of V, the detour distance $D(A, B)$ is defined as $D(A, B) = \min\{D(x, y): x \in A, y \in B\}$. A $u - v$ path of length $D(A, B)$ is called an $A - B$ detour joining the sets A and B, where $u \in A$ and $v \in B$. A vertex x is said to lie on an $A - B$ detour if x is a vertex of an $A - B$ detour. For $A = \{u, v\}$ and $B = \{z, w\}$ with uv and zw edges, we write an $A - B$ detour as $uv - zw$ detour and $D(A, B)$ as $D(uv, zw)$.

Example 1.6: For the graph G given in Fig. 1.3, with $A = \{v_1, v_2\}$ and $B = \{v_4, v_5, v_6\}$, v_1, v_2, v_3, v_4 and v_1, v_6, v_2, v_4 are the $v_1 - v_4$ detours, v_1, v_2, v_3, v_4, v_6 is the $v_1 - v_5$ detour, $v_1, v_2, v_3, v_4, v_5, v_6$ is the $v_1 - v_6$ detour, v_2, v_1, v_6, v_5, v_4 is the $v_2 - v_4$ detour, v_2, v_1, v_6, v_4, v_5 and v_2, v_3, v_4, v_5, v_6 are the $v_2 - v_5$ detours and v_2, v_3, v_4, v_5, v_6 is the $v_2 - v_6$ detour. Hence $D(A, B) = 3$ and an $A - B$ detour is a $v_1 - v_4$ detour so that v_1, v_2, v_3, v_4 and v_1, v_6, v_5, v_4 are the only two $A - B$ detours.

Figure 1.3: G

Definition 1.7: [10] Let $G = (V, E)$ be a connected graph with at least three vertices. A set $S \subseteq V$ is called an edge-to-vertex detour set of G if every vertex of G is incident with an edge of S or lies on a detour joining a pair of edges of S. The edge-to-vertex detour number $dn_2(G)$ of G is the minimum cardinality of its edge-
to-vertex detour sets and any edge-to-vertex detour set of cardinality $dn_2(G)$ is an edge-to-vertex detour basis of G.

Example 1.8: For the graph G given in Fig. 1.4, the two $v_1v_2 - v_4v_5$ detours are $P : v_2, v_1, v_0, v_5$ and $Q : v_2, v_3, v_4, v_5$, each of length 3 so that $D(v_1v_2, v_4v_5) = 3$. Since the vertices v_6 and v_3 lie on the $v_1v_2 - v_4v_5$ detours P and Q respectively, $S_1 = \{v_1v_2, v_4v_5\}$ is an edge-to-vertex detour basis of G so that $dn_2(G) = 2$. Also $S_2 = \{v_1v_6, v_3v_4\}$ is another edge-to-vertex detour basis of G. Thus there can be more than one edge-to-vertex detour basis for a graph.

![Figure 1.4: G](image)

The edge-to-vertex detour number of a graph was introduced and studied in [10]. The following theorem is used in the sequel.

Theorem 1.9: [10] Every end-edge of a connected graph G belongs to every edge-to-vertex detour set of G. Also if the set S of all end-edges of G is an edge-to-vertex detour set, then S is the unique edge-to-vertex detour basis for G.

Throughout this paper G denotes a connected graph with at least three vertices.

2. THE FORCING EDGE-TO-VERTEX DETOUR NUMBER OF A GRAPH

Definition 2.1: Let G be a connected graph and S an edge-to-vertex detour basis of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique edge-to-vertex detour basis containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing edge-to-vertex detour number of S, denoted by $fdn_2(S)$, is the cardinality of a minimum forcing subset for S. The forcing edge-to-vertex detour number of G, denoted by $fdn_2(G)$, is $fdn_2(G) = \min \{fdn_2(S)\}$, where the minimum is taken over all edge-to-vertex detour bases S in G.

Example 2.2: For the graph G given in Fig. 2.1(a), it is easily verified that no two element subset of E is an edge-to-vertex detour set of G. Also, it is clear that the set $S = \{ux, yz, wv\}$ is the unique edge-to-vertex detour basis of G so that $dn_2(G) = 3$.
and \(fdn_2(G) = 0 \). For the graph \(G \) given in Fig. 2.1(b), any set \(S = \{ uv, e \} \) of two edges, where \(e \in E - \{ xu, uv, vy \} \) is an edge-to-vertex detour set of \(G \) so that \(dn_2(G) = 2 \). It is easily seen that no two element subset of \(E - \{ uv \} \) is an edge-to-vertex detour set of \(G \) so that every edge-to-vertex detour basis of \(G \) contains the edge \(uv \). Hence it follows that \(fdn_2(G) = 1 \). Also for the complete graph \(G = K_3 \), it is easily seen that \(fdn_2(G) = 2 \).

![Figure 2.1: G](image)

The next theorem follows immediately from the definitions of edge-to-vertex detour number and forcing edge-to-vertex detour number of a connected graph \(G \).

Theorem 2.3: For every connected graph \(G \), \(0 \leq fdn_2(G) \leq dn_2(G) \).

Remark 2.4: The bounds in Theorem 2.3 are sharp. For any path \(P_n (n \geq 3) \), it is clear that the set of two end-edges is the unique edge-to-vertex detour basis so that \(fdn_2(P_n) = 0 \). For the cycle \(C_3 \), any set of two edges is an edge-to-vertex detour basis so that \(dn_2(C_3) = fdn_2(C_3) = 2 \). Also, the inequality in Theorem 2.3 can be strict. For the cycle \(C_4 \), it is clear that any set of two independent edges is an edge-to-vertex detour basis and so \(dn_2(C_4) = 2 \) and \(fdn_2(C_4) = 1 \). Thus \(0 < fdn_2(G) < dn_2(G) \).

The following theorem is an easy consequence of the definition of forcing edge-to-vertex detour number of a graph.

Theorem 2.5: Let \(G \) be a connected graph. Then

(i) \(fdn_2(G) = 0 \) if and only if \(G \) has a unique edge-to-vertex detour basis,

(ii) \(fdn_2(G) = 1 \) if and only if \(G \) has at least two edge-to-vertex detour bases, one of which is a unique edge-to-vertex detour basis containing one of its elements, and

(iii) \(fdn_2(G) = dn_2(G) \) if and only if no edge-to-vertex detour basis of \(G \) is the unique edge-to-vertex detour basis containing any of its proper subsets.

An edge that belongs to each edge-to-vertex detour basis is called an **edge-to-vertex detour edge**.
Theorem 2.6: Let G be a connected graph and W be the set of all edge-to-vertex detour edges of G. Then $fdn_2(G) \leq dn_2(G) - |W|$.

Proof: Let S be an edge-to-vertex detour basis of G. Then $dn_2(G) = |S|$, $W \subseteq S$ and S is the unique edge-to-vertex detour basis containing $S - W$. Hence $fdn_2(S) \leq |S - W| = |S| - |W| = dn_2(G) - |W|$ and the result follows.

Remark 2.7: The bound in Theorem 2.6 is sharp. For the graph G given in Figure 2.1(b), $dn_2(G) = 2$, $|W| = 1$ and $fdn_2(G) = 1$ as in Example 2.2. Also, the inequality in Theorem 2.6 can be strict. As in Remark 2.4, for the cycle C_4, $dn_2(C_4) = 2$ and $fdn_2(G) = 1$. Further, there is no edge-to-vertex detour edge so that $|W| = 0$. Thus $fdn_2(G) < dn_2(G) - |W|$.

Theorem 2.8: (i) For the complete graph K_p ($p \geq 4$), a set S of edges is an edge-to-vertex detour basis if and only if S consists of two independent edges of K_p.

(ii) For the complete bipartite graph $K_{m,n}$ ($2 \leq m \leq n$), a set S of edges is an edge-to-vertex detour basis if and only if S consists of two independent edges of $K_{m,n}$.

Proof: (i) Let $S = \{e, f\}$ be any set of two independent edges of K_p. Then it is clear that $D(e,f) = p - 1$ and hence it follows that S is an edge-to-vertex detour set of K_p. Now, let S be an edge-to-vertex detour basis of K_p. Let S' be any set consisting of two independent edges. Then as in the first part of this theorem S' is an edge-to-vertex detour basis of K_p. Hence $|S| = |S'| = 2$. Let $S = \{e, f\}$. If e and f are not independent, then $D(e,f) = 0$ and since $p \geq 4$, S can not be an edge-to-vertex detour set of G, which is a contradiction. Thus S consists of two independent edges.

(ii) Let X and Y be the bipartite sets of $K_{m,n}$ ($2 \leq m \leq n$) with $|X| = m$ and $|Y| = n$ and let $S = \{uv, zw\}$ be a set of any two independent edges of $K_{m,n}$ such that $u, z \in X$ and $v, w \in Y$. We show that S is an edge-to-vertex detour basis of $K_{m,n}$.

Case 1: $m = n = 2$. Then $K_{m,n} = C_4$ and it is clear that every vertex of $K_{m,n}$ is incident with an edge of S so that S is an edge-to-vertex detour basis of $K_{m,n}$.

Case 2: $2 \leq m \leq n$ and $n \neq 2$. We consider two subcases:

Subcase 1: $m < n$. It is clear that $D(u, z) = 2 (m - 1)$, $D(u, w) = D(v, z) = 2m - 1$, $D(v, w) = 2m$ and so $D(uv, zw) = 2 (m - 1)$. Let $y \in Y$ be any vertex different from v and w. If $m > 2$, consider any set of $m - 2$ vertices $x_1, y, x_2, \ldots, y_{m-2}$ from $Y - \{v, w\}$. Then the vertex y lies on the $uv - wz$ detour $P : u = x_1, y, x_2, y_1, x_3, y_2, \ldots, x_{m-1}, y_{m-2}$, $x_m = z$, where $x_1, x_2, \ldots, x_m \in X$. If $m = 2$, then y lies on the $uv - wz$ detour $Q : u, y, z$.

To remove this message, purchase the product at www.SolidDocuments.com
Since every vertex of X also lies on the same detour P and Q in respective cases, it follows that S is an edge-to-vertex detour basis of $K_{m,n}$ and hence $dn_2(K_{m,n}) = 2$.

Subcase 2: $m = n$. It is clear that $D(u, z) = D(v, w) = 2(m - 1)$, $D(u, w) = D(v, z) = 2m - 1$ and so $D(uv, zw) = 2(m - 1)$. Also $P : u, v, x_1, y_1, x_2, y_2, ..., x_m, y_m, z$, where $u, x_1, x_2, ..., x_m, z \in X$ and $v, y_1, y_2, ..., y_m \in Y$ with $w \neq v_i (1 \leq i \leq m - 2)$ is a $uv - zw$ detour containing all vertices of $K_{m,n}$ other than the vertex w. Since w is incident with the edge zw, it follows that S is an edge-to-vertex detour basis of $K_{m,n}$.

The proof of the converse is similar to that of Theorem 2.8(i).

Corollary 2.9: (i) If G is the complete graph $K_p (p \geq 3)$, then $dn_2(G) = 2$.

(ii) If G is the complete bipartite graph $K_{m,n}$ $(2 \leq m \leq n)$, then $dn_2(G) = 2$.

Theorem 2.10: For any cycle $G = C_p (p \geq 3)$, $dn_2(G) = 2$.

Proof: For $p = 3$, the result follows from the Corollary 2.9(i). For $p \geq 4$, let $C_p : v_1, v_2, ..., v_{p-1}, v_p, v_1$ be the cycle of length $p \geq 4$. Let $S = \{v_1v_2, v_{p-1}v_p\}$. Then S is an edge-to-vertex-detour basis of C_p and so $dn_2(G) = 2$.

Theorem 2.11: For the complete graph $K_p (p \geq 3)$,

(i) $dn_2(K_p) = fdn_2(K_p) = 2$ for $p = 3$ or $p \geq 5$.

(ii) $dn_2(K_p) = 2$ and $fdn_2(K_p) = 1$ for $p = 4$.

Proof: (i) For $p = 3$, this follows from Corollary 2.9(i). Let $p \geq 5$. Then by Theorem 2.8(i), a set S of two edges is an edge-to-vertex detour basis of K_p if and only if S consists of two independent edges of K_p. For each edge e in $K_p (p \geq 5)$ there are at least two edges independent with e. Thus the edge e belongs to more than one edge-to-vertex detour basis of K_p. Hence it follows that no set consisting of a single edge is a forcing subset for any edge-to-vertex detour basis of K_p. Thus $fdn_2(K_p) = 2$. Also, by Corollary 2.9(i), $dn_2(K_p) = 2$ and the result follows.

(ii) By Corollary 2.9(i), $dn_2(K_p) = 2$ when $p = 4$. Let v_1, v_2, v_3, v_4 be the vertices of K_4. Then it is clear that the edge-to-vertex detour bases are $S_1 = \{v_1v_2, v_3v_4\}$, $S_2 = \{v_1v_4, v_2v_3\}$ and $S_3 = \{v_1v_3, v_2v_4\}$ and hence it follows that $fdn_2(K_4) = 1$.

Theorem 2.12: For the cycle $C_p (p \geq 4)$,

(i) $dn_2(C_p) = 2$ and $fdn_2(C_p) = 1$ for $p = 4$.

(ii) $dn_2(C_p) = fdn_2(C_p) = 2$ for $p \geq 5$.

Proof: (i) By Theorem 2.10, $dn_2(C_4) = 2$. Let v_1, v_2, v_3, v_4 be the vertices of C_4. Then it is clear that the edge-to-vertex detour bases are $S_1 = \{v_1v_2, v_3v_4\}$ and $S_2 = \{v_1v_4, v_2v_3\}$ and hence it follows that $fdn_2(C_4) = 1$.

To remove this message, purchase the product at www.SolidDocuments.com
(ii) Let C_p be the cycle $v_1, v_2, ..., v_{p-1}, v_p, v_1$. For any edge, say $v_i v_{i+1}$ of C_p, it is clear that the sets $S_1 = \{v_1 v_2, v_1 v_3\}$, $S_2 = \{v_1 v_2, v_{p-1} v_p\}$ of edges C_p are edge-to-vertex detour bases of C_p. Thus an edge e belongs to more than one edge-to-vertex detour basis of C_p. So it follows that no single edge is a forcing subset for any edge-to-vertex detour basis of C_p and hence $fdn_2(C_p) = 2$. By Theorem 2.10, $dn_2(C_p) = 2$ and the result follows.

Theorem 2.13: For the complete bipartite graph $K_{m,n} \neq K_{2,2}$ ($2 \leq m \leq n$), $dn_2(K_{m,n}) = fdn_2(K_{m,n}) = 2$.

Proof: By Theorem 2.8(ii), any set of two edges e and f in $K_{m,n}$ ($2 \leq m \leq n$) is an edge-to-vertex detour basis of $K_{m,n}$ if and only if e and f are independent. It is clear that for each edge e in $K_{m,n}$ there are at least two edges independent with e. Thus the edge e belongs to more than one edge-to-vertex detour basis of $K_{m,n}$. Hence it follows that no set consisting of a single edge is a forcing subset for any edge-to-vertex detour basis of $K_{m,n}$. Thus $fdn_2(K_{m,n}) = 2$. Also, by Corollary 2.9(ii), $dn_2(K_{m,n}) = 2$ and the result follows.

Theorem 2.14: If G is a tree of order $p \geq 3$ with k end-vertices, then $dn_2(G) = k$ and $fdn_2(G) = 0$.

Proof: The set of all end-edges of a tree is the unique edge-to-vertex detour basis and so the result follows from Theorem 1.9 and Theorem 2.5(i).

In view of Theorem 2.3, we have the following realization result.

Theorem 2.15: For each pair a, b of integers with $0 \leq a \leq b$ and $b \geq 2$, there is a connected graph G with $fdn_2(G) = a$ and $dn_2(G) = b$.

Proof. Case 1: $a = 0$. For each $b \geq 2$, let G be a tree with b end-vertices. Then $fdn_2(G) = 0$ and $dn_2(G) = b$ by Theorem 2.14.

Case 2: $a \geq 1$. For each $i \ (1 \leq i \leq a)$, let $F_i : u_i, v_i, w_i$ be a path of order 3 and let $H = K_{1, b-a}$ be the star at v whose set of end-vertices is $\{z_1, z_2, ..., z_{b-a}\}$. Let G be the graph $G = G_1 \cup G_2 \cup H$ such that G_1 is a tree with a end-vertices, G_2 is a tree with $b-a$ end-vertices, and H is a star with b end-vertices.
THE FORCING EDGE-TO-VERTEX DETOUR NUMBER OF A GRAPH

graph obtained by joining the central vertex ν of H to both vertices u_i, w_i of each F_i (1 ≤ i ≤ a). The graph G is connected and is shown in Fig. 2.2.

Let W = \{v_{z1}, v_{z2}, ..., v_{zb-a}\} be the set of all (b – a) end-edges of G. First, we show that \(dn_2(G) = b\). By Theorem 1.9, every edge-to-vertex detour basis contains W. Also, it is clear that every edge-to-vertex detour basis must contain at least one edge from each F_i (1 ≤ i ≤ a). Thus \(dn_2(G) ≥ (b – a) + a = b\). Let S = W \cup \{e_1, e_2, ..., e_a\}, where \(e_i ∈ \{u_i, v_i, v_i, w_i\}\ (1 ≤ i ≤ a)\). Then it is clear that S is an edge-to-vertex detour set of G so that \(dn_2(G) ≤ |S| = b\). Therefore, \(dn_2(G) = b\).

Next we show that \(fdn_2(G) = a\). It is clear that W is the set of all edge-to-vertex detour edges of G. Hence it follows from Theorem 2.6 that \(fdn_2(G) ≤ dn_2(G) – |W| = b – (b – a) = a\). Now, since \(dn_2(G) = b\), it is easily seen that a set S is an edge-to-vertex detour basis of G if and only if S is of the form S = W \cup \{e_1, e_2, ..., e_a\}, where \(e_i ∈ \{u_i, v_i, v_i, w_i\}\ (1 ≤ i ≤ a)\). Let T be a subset of S with |T| < a. Then there is an edge \(e_j (1 ≤ j ≤ a)\) such that \(e_j ∈ T\). Let \(f_j\) be an edge of \(F_j\) distinct from \(e_j\). Then \(S' = (S – \{e_j\}) \cup \{f_j\}\) is an edge-to-vertex detour basis that contains T. Thus S is not the unique edge-to-vertex detour basis containing T. Thus \(fdn_2(S) ≥ a\). Since this is true for all edge-to-vertex detour basis of G, it follows that \(fdn_2(G) ≥ a\) and so \(fdn_2(G) = a\).

REFERENCES

A. P. Santhakumaran¹ & S. Athisayanathan²
Department of Mathematics,
St. Xavier’s College (Autonomous),
Palayamkottai - 627 002, India.
E-mails: ¹*e-mail: apskumar1953@yahoo.co.in*
²*e-mail: athisayanathan@yahoo.co.in*